期刊文献+

量子可逆电路综合的启发式快速匹配算法 被引量:4

Heuristic fast-matching algorithm for synthesis of quantum reversible logic circuits
下载PDF
导出
摘要 提出了基于Reed-Muller展开式,使用CNT量子门库,以量子门表达式为启发式规则进行前向模式匹配的量子可逆逻辑电路快速综合算法.与通常所用的穷尽搜索算法相比,该算法利用量子门表达式作为启发式规则进行匹配代换,避免盲目匹配,有效降低了匹配复杂度,减少匹配代换的数量.同时该算法不会出现穷尽搜索中因不能找到有效解而进行回溯的现象,能以较小的时间空间复杂度生成最优或近似最优的量子可逆电路,特别在多量子可逆逻辑电路综合上,能够表现出更好的性能. Heuristic fast-matching algorithm for quantum reversible logic circuits synthesis is presented. The algorithm is based on Reed-Muller expansion, uses CNT quantum gates library, takes the quantum gate equations as the heuristic rules and adopts forward-matching method to construct quantum circuits. Compared with current exhaustive search, the proposed algorithm uses the quantum gate equations as the heuristic rules which can avoid blind matching and decrease the matching complexity. It is simple and can effectively build optimal or near-optimal circuits with lower cost. Moreover it can perform well in the multi-quantum reversible logic circuits synthesis.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第5期900-903,共4页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金资助项目(60572071 60873101) 江苏省自然科学基金资助项目(BM2006504 BK2007104)
关键词 量子可逆逻辑电路 Reed-Muller展开式 CNOT门 Toffoli门 quantum reversible logic circuits Reed-Muller expansion CNOT gate Toffoli gate
  • 相关文献

参考文献1

二级参考文献11

  • 1D Deutsch. Quantum theory, the Church-Turing principle and the universal quantum computer [J] .Proc Royal Soc London, 1985,400(1818) :97 - 117.
  • 2E Fredkin, T Toffoli. Conservative logic [ J]. International Journal of Theoretical Physics, 1982,21:219 - 253.
  • 3X Y Song,G W Yang,M Perkowski, et al.Algebraic characteristics of reversible gates [ J ]. Theory of Computing Systems,2005,39(2):311- 319.
  • 4D Maslov, G W Dueck, D M Miller. Toffoli network synthesis with templates [ J ]. IEEE Trans on Circuits and Systems-I, 2005,24(6) : 807 - 817.
  • 5W Q Li,H W Chen, Z Q Li. Application of semi-template in reversible logic circuit [A]. Proceedings of the 11 th International Conference on CSCWD [ C]. Melbourne, Australia, 2007. 155 - 161.
  • 6P Gupta, A Agrawal, N K Jha. An algorithm for synthesis of reversible logic circuits [ J].IEEE Trans on Circuits and Systems-I,2006,25(11) :807 - 817.
  • 7V V Shende, A K Prasad, I L Markov, et al. Synthesis of reversible logic circuits [J]. IEEE Trans on Circuits and Systems-I, 2003,22 (6) : 723 - 729.
  • 8G W Yang,X Y Song,M Perkowski, et al. Fast synthesis of exact minimal reversible circuits using group theory [ A ]. Proceedings of IEEE ASP-DAC 2005 [ C ]. Shanghai, China, 2005. V2,18 - 21.
  • 9G W Yang,X Y Song, W N N Hung, M Perkowski. Bi-directional synthesis of 4-bit reversible circuits [J ]. The Computer Journal, 2008,51 (2) : 207 - 215.
  • 10G L Long, Y Sun. Efficient scheme for initializing a quantum register with an arbitrary superposed state [J]. Phys Rev A, 2001,64(1) :014303:1 - 8.

共引文献13

同被引文献35

  • 1肖芳英 陈汉武 陈开中 等.可逆电路错误检测方法的研究.通信学报,2007,28(8):96-104.
  • 2Bennett C.Logical reversibility of computation[J].IBM J Res Dev,1973,17(6):525-532.
  • 3Maslov D,Dueck G W,Miller D M.Toffoli network synthesis with templates[J].IEEE Trans CADICS,2005,24(6):807-817.
  • 4Miller D M,Maslov D,Dueck G W.A transformation based algorithm for reversible logic synthesis[C]//Proceedings of Design Automation Conference.Anaheim,CA,USA,2003:318-323.
  • 5Paterson K G.Generalized Reed-Muller codes and power control in OFDM modulation[J].IEEE Transactions on Information Theory,2000,46(11):104-120.
  • 6Sasao T.Easily testable realizations for generalized Reed-Muller expressions[J].IEEE Transactions on Computers,1997,46(6):709-716.
  • 7Tsai C C,Marek-Sadowska M.Generalized Reed-Muller forms as a tool to detect symmetries[J],IEEE Transactions on Computers,1996,45(11):33-40.
  • 8Paterson K G,Jones A E.Efficient decoding algorithms for generalized Reed-Muller codes[J].IEEE Transactions on Communications,2000,48(88):1272-1285.
  • 9Yang G,Song X,Perkowski M A,et al.Four-level realization of 3-qubit reversible function[J].IET Comput Digit Tech,2007,1(4):382-388.
  • 10Savage J E.Models of computation[M].Boston,MA,USA:Addison-Wesley Longman Publishing Co.,Inc.,2007.

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部