期刊文献+

我国机床工业产品性能及实力分析

The Research of Motor Fault Diagnosis in Multi-fault Coupling Mode Based on the Artifical Immunity System
下载PDF
导出
摘要 针对电机的结构和故障特点,借鉴免疫系统中抗体不仅能被抗原识别,也能被其它抗体识别的特点,对传统阴性选择算法进行改进,建立了反馈免疫算法模型,并将其应用于电机多故障耦合模式下的精确诊断。该算法通过检测器间激励度矩阵反映各个故障间的相互耦合效应,从而获得多故障耦合情况下的电机故障特征;诊断过程中综合分析电机的机械和电气特征可有效避免误诊和漏诊的情况发生,提高诊断的准确率。对JSZ148-4型三相异步电动机的诊断实例表明了本文所提出算法的正确性和实用性。 Use for reference the character of that the antibody not only can be discriminated by antigen ,but also can be discriminated by the other antibody in the immunity system. A feedback immunity arithmetic model considering cost of structure and fault characteristic of motor is proposed. The arithmetic is applied tothe motor fault diagnose in the mutil-fault coupling mode. In this arithmetic, the stimulate degree matrix between detecting organs is used to reflect the coupling effect between the different fault types, and the fault character of multi-fanh mode can be obtained through the stimulate degree matrix. Integrating the electric and mechanical character of motor into fault diagnosis can enhance the veracity of fault result, The proposed model and arithmetic are applied to the fault diagnosis of JSZ148 -4 type motor, the results verify the correctness and practicability of them.
作者 滕忠沛 勾轶 TENG Zhongpei,GOU Yi
出处 《现代机械》 2009年第5期4-6,12,共4页 Modern Machinery
关键词 人工免疫系统(AIS) 故障诊断 多故障耦合 激励度矩阵 artifical immunity system(MS) fault diagnosis multi-fault coupling stimulate degree matrix
  • 相关文献

参考文献11

  • 1邱阿瑞,孙健.电机故障模式识别与诊断[J].清华大学学报(自然科学版),1999,39(3):72-74. 被引量:25
  • 2陈长征,栗青,刘一芳,王亚光.汽轮发电机组故障智能诊断方法研究[J].中国电机工程学报,2002,22(5):121-124. 被引量:38
  • 3Cserey,G. , Falus,A. ,Porod,W. , Roska,T. An Artificia Immune System For Visual Applications with CNN-UM [ J ]. Circuits and Systems, 2004. ISCAS'04. Proceedings of the 2004 International Symposium. 2004,17-20.
  • 4J. H. Lee and H. Hashimoto. Intelligent Space: Its Concept and Contents. Advanced Robot. 2002,16(4) :265-280.
  • 5Timmis ,J. , Edmonds C. , Kelsey,J. Assessing the Performan of Two Immune Inspired Algorithms and a Hybrid Genetic Algorithm for Function Optimization[ J ]. Evolutionary Computation,2004, 1 044-1 050.
  • 6王雪,左巍,赵国华.基于多传感器集成融合技术的敏捷虚拟测试诊断系统研究[J].中国机械工程,2001,12(8):914-918. 被引量:3
  • 7谈理,刘谨,叶赛蓬,梅丽婷.基于多模块合成的故障诊断智能系统推理机的研制[J].中国机械工程,2006,17(6):621-625. 被引量:8
  • 8Kyusung Kim, Alexander G. Parlos. Induction Motor Fault Diagnosis Based on Neuropredictors and Wavelet Signal Processing [ J ]. IEEE/ ASME Trans on Mechatronics,2002,7(2) :201-219.
  • 9R. G. Smiley. Rotating Machinery: Monitoring and Fault Diadnosis[J]. Sound and Vibmtion, 1983, 9:26-28.
  • 10Benbouzid, Beguenance, Vieira. Induction Motor Asymmetrical Faults Detection Using Advanced Signal Processing Techniques[J]. IEEE EC, 1999,14(2) :147-152.

二级参考文献22

  • 1[1]Chuel-Tin Chang,Kai-Nan Mah,Chii-Shiang Tsai.A simple design stratage for fault monitoring systems[J].AIChE Journal,1999,39(3):1146-1163.
  • 2[2]Kajiro Watanabe,Ichiro Matsuura,Masahiro Abe,et al.Incipient fault diagnosis of chemical processing via artificial neural networks [J].AIChE Journal,1989,35(11):1803-1812.
  • 3[3]Timo Sorsa,Heikki N,Koivo,Hannu Koivisto.Neural networks in process fault diagnosis[J].IEEE Transactions on System,Man and Cybernetics,1991,21(4):815-825.
  • 4[4]Fan J Y,Nikolaou M,White R E.An approach to fault diagnosis of chemical processes via neural networks[J].AIChE Journal,1993, 39(1):82-87.
  • 5[5]Tansel I N, Wagiman A, Tziranis A. Recognition of chatter with neural networks[J]. Int. J. Mach. Tools Manufactory, 1991, 31(4): 539-552.
  • 6[6]Chow Mo-yuen,Mangum Peter M,Yee Sui Oi.A neural network approach to real-time condition monitoring of Induction motors.IEEE Transactions on Industrial Electronics,1991,38(6):448-453.
  • 7Ho S L,IEE Electrcal Machines and Drives Conf Publication,1995年,412卷,176页
  • 8Cho K R,IEEE Trans IA,1992年,28卷,3期,702页
  • 9Chow M Y,IEEE Trans IE,1991年,38卷,6期,448页
  • 10边肇祺,模式识别,1988年

共引文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部