摘要
采用重心有理插值近似未知函数,得到未知函数的各阶微分矩阵.利用微分矩阵将压杆控制微分方程离散为代数方程组.将离散的边界条件采用置换法施加到代数方程组中,得到关于压杆屈曲载荷的特征方程.求解特征值问题得到压杆的屈曲载荷.算例表明,重心有理插值配点法具有数值稳定性好、计算精度极高,程序实施容易等优点.
The differentiation matrices of unknown function are constructed by using barycentric rational interpolation. The differential equations of Bar are discretized into algebraic equations using the differentiation matrices. Discretized boundary conditions are imposed to the algebraic equations with replacing meathed, eigenvalue equations of buckling load of Bar are obtained. Get the buckling load through out sovling the eigenvalue equations. The numerical examples demonstrate that the BRICM has merits of good numerical stability, high accurate and ease to program.
出处
《河南科学》
2009年第11期1352-1354,共3页
Henan Science
关键词
重心有理插值
压杆
屈曲荷载
配点法
barycentric rational interpolation
bar
buckling load
collocation method