期刊文献+

重心有理插值配点法分析压杆稳定问题 被引量:1

Stability Analysis of Bar Using Barycentric Rational Interpolation Collocation Method
下载PDF
导出
摘要 采用重心有理插值近似未知函数,得到未知函数的各阶微分矩阵.利用微分矩阵将压杆控制微分方程离散为代数方程组.将离散的边界条件采用置换法施加到代数方程组中,得到关于压杆屈曲载荷的特征方程.求解特征值问题得到压杆的屈曲载荷.算例表明,重心有理插值配点法具有数值稳定性好、计算精度极高,程序实施容易等优点. The differentiation matrices of unknown function are constructed by using barycentric rational interpolation. The differential equations of Bar are discretized into algebraic equations using the differentiation matrices. Discretized boundary conditions are imposed to the algebraic equations with replacing meathed, eigenvalue equations of buckling load of Bar are obtained. Get the buckling load through out sovling the eigenvalue equations. The numerical examples demonstrate that the BRICM has merits of good numerical stability, high accurate and ease to program.
作者 王奇 王兆清
出处 《河南科学》 2009年第11期1352-1354,共3页 Henan Science
关键词 重心有理插值 压杆 屈曲荷载 配点法 barycentric rational interpolation bar buckling load collocation method
  • 相关文献

参考文献8

  • 1陈骥.钢结构稳定理论与设计[M].北京:中国科学出版社,2000.
  • 2Wu T Y, Liu G R. A differential quadrature as a numerical method to solve differential equations [J]. Computational Mechanical, 1999, 24: 197-205.
  • 3Cw Malik M. Differential quadrature method in computational mechanics: a review[J]. Apple Mech Rev, 1999,49- 1-27.
  • 4Claudio Franciosi, Stefania Tomasiello. Static analysis of a Bickford beam by means of the DQEM [J]. International Journal of Mechanical Sciences, 2007,49: 122-128.
  • 5Trefethen L N. Spectral methods in Matlab[M]. Philadelphia: SIAM, 2000.
  • 6Berrut J P, Mittelmann H D. The linear rational pseudospectral method with iteratively optimized poles for two-point boundary-value problems [J]. SIAM Journal of Scientific Computation, 2001,23 : 961-975.
  • 7Floater M S, Hormann K. Barycentric rational interpolation with no poles and high rates of approximation[J].Numerische Mathematik, 2007, 107 (2) : 315-331.
  • 8王兆清,李树忱,唐炳涛,赵晓伟.求解两点边值问题的有理插值Galerkin法[J].山东建筑大学学报,2008,23(4):283-286. 被引量:6

二级参考文献6

共引文献5

同被引文献20

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部