期刊文献+

概率赋范空间的有界性(英文) 被引量:1

Boundedness in probabilistic normed spaces
下载PDF
导出
摘要 研究了概率赋范空间中D-有界集被零向量邻域吸收的性质。同时对各种有界性的关系也进行了研究。 The absorbed properties of the D-bounded sets are studied. The relationship of various boundedness in the PN spaces is also studied.
出处 《成都信息工程学院学报》 2009年第5期513-520,共8页 Journal of Chengdu University of Information Technology
关键词 概率赋范空间 LG-性质 拓扑有界 完全有界 拟有界 D-有界 PN space LG-property topological bounded totally bounded quasi-bounded D-bounded
  • 相关文献

参考文献6

  • 1C Alsina, B Sehweizer, A Sklar. On the definition of a probabilistic normed space[J ]. Aequationes Mathemalicae, 1993, (46) : 91 - 98.
  • 2B L Guillen, J A Rodriguez Lallena, C Sempi. A study of boundedness in probabilistic normed spaces[J ]. J. Math. Anal. Appl, 1999, (232) : 183 - 196.
  • 3B L Guillen, J A Rodriguez Lallena. Boundedness in generalized Serstnev PN spaces[J ]. Ziv. Math, 0408207v4 [ Math. FA], 2005.
  • 4B Sehweizer, A Sklar. Probabilistic metric spaces[M]. New York: Elsevier North-Holland, 1983:10- 103.
  • 5Reza Saadati, Massoud Amini. D-boundedness and D-compactness in finite dimensional probabilistie normed spaces[J]. Indian Acad Sci. (Math. Sci. ), 2005,115(4) :483 - 492.
  • 6G Kothe. Topological Vector Spaces[M]. NewYork: Springer, 1969 : 116 - 233.

同被引文献10

  • 1SCHWEIZER B,SKLAR A.Probabilistic Metric Spaces[M].New York:Elsevier North-Holland,1983:1-313.
  • 2ERSTNEV A N.On the Notion of a Random Normed Space[J].Dokl Akad Nauk SSSR,1963,149(2):280-283.
  • 3ALSINA C,SCHWEIZER B,SKLAR A.On the Definition of a Probabilistic Normed Space[J].Aequationes Math-ematicae,1993,46:91-98.
  • 4LAFUERZA-GUILLN B,RODRGUEZ-LALLENA J A,SEMPI C.Some Classes of Probabilistic Normed Space[J].Rendiconti di Matematica,1997,17(4):237-252.
  • 5ALSINA C,SCHWEIZER B,SKLAR A.Continuity Properties of Probabilistic Norms[J].J Math Anal Appl,1997,208:446-452.
  • 6LAFUERZA-GUILLN B,RODRGUEZ-LALLENA J A.A Study of Boundedness in Probabilistic Normed Spaces[J].J Math Anal Appl,1999,232:183-196.
  • 7LAFUERZA-GUILLN B.D-Boundedness Sets in Probabilistic Normed Spaces and in Their Products[J].Rendiconti diMatematica,2001,21(4):17-28.
  • 8ZHANG Min-xian.Representation Theorem on Finite Dimensional Probabilistic Normed Space[J].Sci Math Jpn,2004,60:29-36.
  • 9SAADATI R,AMINI M.D-Boundedness and D-Compactness in Finite Dimensional Probabilistic Normed Spaces[J].Indian Acad Sci(Math Sci),2005,115(4):483-492.
  • 10闫常丽.概率赋准范空间及概率赋范空间的算子理论[D].成都:成都信息工程学院,2008.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部