期刊文献+

基于模糊随机损伤力学的模糊自适应有限元分析 被引量:2

Fuzzy self-adapting finite element method based on Fuzzy stochastic damage mechanics
下载PDF
导出
摘要 为延拓非确定损伤理论研究以揭示损伤力学本质,基于损伤、概率、模糊隶属度在[0,1]区间上协调一致性提出模糊随机损伤力学观念。构造解释了3类损伤变量模糊性态及对应模糊映射分布,即降半分布、"秋千"分布和组合"秋千"分布,实现了随机损伤变量模糊化自适应生成与构建。依据扩张原理及随机损伤变量满足β概率分布,对模糊集上随机损伤变量的CDF、PDF积分修正,结合当量正态理论,将3类模糊随机损伤泛函引入本构方程,完成模糊随机有限元可靠度与模糊随机损伤同步分析。用自主研制分析软件对龙滩碾压混凝土坝做三维模糊随机损伤场力学性态研究,由复杂随机场与模糊随机损伤分析的成功融合证明分析方法是适用的、可行的、必要的。 Fuzzy stochastic damage mechanics development original model was introduced to discover the essential of damage mechanics with damage uncertainty' s proper expansion based on the harmony of damage conception, probability, fuzzy degree of membership on [0,1] scale. Three damage variables' fuzzy definition status and the corresponding fuzzy mapping distributions were formulated, namely, half depressed distribution, swing distribution and combined swing distribution, by which the stochastic damage variables' fuzzy process was realized during adaptive generation. According to the expansion theory and the β probabilistic distribution,CDF and PDF of fuzzy stochastic damage variables were adjusted. Based on the equivalent normalization theory, the model was clarified by the introduction of the three fuzzy stochastic damage functionals into the constitutional model and then the reliability and the fuzzy stochastic damage were analyzed on the basis of the fuzzy stochastic finite element method. 3-dimension fuzzy stochastic damage mechanical status of the numerical model of Longtan rolled-concrete dam was researched by the self-developed fuzzy stochastic damage finite element method. Compatible application of the comprehensive random field study and the fuzzy stochastic damage model research proves that all of the work are applicable, viable and essential.
出处 《解放军理工大学学报(自然科学版)》 EI 北大核心 2009年第5期440-446,共7页 Journal of PLA University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(50379046) 教育部博士点基金资助项目(A50221)
关键词 Β-分布 损伤变量模糊数 模糊随机变分 模糊随机有限元 模糊自适应 模糊随机损伤 β-distribution damage variable fuzzy member fuzzy stochastic variation fuzzy stochastic finite element method fuzzy adaptive theory fuzzy stochastic damage
  • 相关文献

参考文献13

  • 1ZHANG Wo-hua, VALLIAPPAN S. Continuum damage mechanics theory and application, Part I-Theory [J]. Int JDamage Mechanics, 1998(7): 250-297.
  • 2张我华,金伟良,李鸿波.岩石边坡稳定性的随机损伤力学分析[J].水利学报,2005,36(4):413-419. 被引量:20
  • 3ZHANG Wo-hua, VALLIAPPAN S. Analysis of random anisotropic damage mechanics problems of rock mass, part I-probabilistic simulation, part II-statistical estimation[J].J Rock mechanics and Rock Engineering, 1990,23(1) :91-112, 23(3), 241-259.
  • 4SILBERSCHMIDT V V, CHABOCHE Jean-Louis . Effect of stochasticity on the damage accumulation in solids[J].Int J Damage Mechanics, 1994(3) :57-70.
  • 5WU Hwai-Chung, LI V C. Stochastic process of multiple cracking in discontinuous random fiber reinforced brittle matrix composites[J]. Int J Damage Mechanics, 1995(4) :83-102.
  • 6JU J W,TSENG K H. An improved teo-dimensional micromechanical theory for brittle solids with randomiy located interacting Microcracks[J].Int J Damage Mechanics, 1995 (4) : 23-57.
  • 7SILBERSCHMIDT V V. Dynamics of stochastic damage evolution[J]. Int J Damage Mechanics, 1998 (7) : 84-98.
  • 8RINALDI A, KRAJCINOVIC D, MASTILOVIC S. Statistical damage mechanics and extreme value theory [J]. Int J Damage Mechanics, 2007(16):57-76.
  • 9王家臣,常来山,陈亚军.节理岩体边坡概率损伤演化规律研究[J].岩石力学与工程学报,2006,25(7):1396-1401. 被引量:16
  • 10AUVINET G, MELLAH R, MARROURI F. Stochastic finite element analysis in geomechanics [C]. Sydney: Proc Int Conf Applications of Statistics and Probability, 1999.

二级参考文献38

  • 1王亚军.基于模糊随机理论的广义可靠度在边坡稳定性分析中的应用[J].岩土工程技术,2004,18(5):217-223. 被引量:9
  • 2王家臣,常来山,陈亚军,肖辉.露天矿节理岩体三维网络模拟与概率损伤分析[J].北京科技大学学报,2005,27(1):1-4. 被引量:9
  • 3吕震宙,冯元生.考虑随机模糊性时结构广义可靠度计算方法[J].固体力学学报,1997,18(1):80-85. 被引量:13
  • 4Siddall J. Probabilistic engineering design, principal and applications [ M ]. Marcel Dekker, INC, New York and Basel,1983.
  • 5Zhang W H, Valliappan S. Continuum damage mechanics theory and application, Part Ⅰ-theory, Part Ⅱ-applications[J] . Int. J. Damage Mecha. , 1998, (7) :250 - 297.
  • 6Richarde G.Introduction to rock mechanics[M].台北:儒林图书有限公司发行.
  • 7Zhang W H, Chen Y M, Jin Y. Method of probability analysis for breakwater stability [ C ]. Int. Sym. on Coastal Geotechnical Engng. in Practice,Japan, 2000,9.
  • 8Hoek E, Bray J. Rock slope engineering [M], revised 2^nd ed, Inst. of Mining and Metallurgy, London 1977.257-270.
  • 9Chowdhrury N, Tang H, Sidi I. Reliability model of progressive slope failure [J]. Geoteehnique, 1987,37(4) :467 -481.
  • 10Alfredo H-S, Wilson T. Probability concepts in engineering design, Vol. Ⅱ , Secession, rescue and reliability [ M ]. Hohn Wiley & Sons, New York, 1984.

共引文献43

同被引文献23

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部