期刊文献+

基于改进PSO算法和集成神经网络的裂解炉在线优化 被引量:2

Online Optimization of Cracking Furnace Based on Advanced PSO Algorithm and Neural Network Ensembles
下载PDF
导出
摘要 针对传统粒子群算法(PSO)寻优时易陷入局部最优、后期全局搜索能力下降等不足,提出了基于载波的粒子群算法(CWPSO)。通过粒子基于载波的搜索和载波扩展精确寻优,较好地克服了上述缺点,且寻优时间明显减少。同时,针对工业裂解炉在线优化要求,采用了权值动态集成的集成神经网络(NNE)对双烯收率进行建模预测,并结合CWPSO算法进行了在线滚动优化。仿真结果表明,该方法对裂解炉的优化效果明显,双烯平均收率有了明显提高。 The traditional Particle Swarm Optimization (PSO) algorithm is easily trapped in the local optimum and converges slowly. Due to the shortcomings above, a novel PSO algorithm based on the carrier-wave (CWPSO) is presented in the paper, which searches through the carrier-wave and takes a precise search by means of carrier-wave extending. As a result, it overcomes the above shortcomings better, and has a shorter searching time as well. In addition, towards the online optimal requirements of the industrial cracking furnace, a neural network ensembled with dynamic weights is applied in the predictive modeling of C2 H4 and C3 H6 yield rates, then the online rolling optimization is carried out. The simulating result shows that the optimal method has sound effects for the cracking furnace, and there is a palpable improvement of C2 H4 and C3 H6 yield rates.
出处 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第5期756-761,共6页 Journal of East China University of Science and Technology
基金 国家杰出青年科学基金(60625302) 高等学校学科创新引智计划资助(B08021) 国家973项目(2009CB320603) 国家863计划课题(2006AA04Z168 2007AA041402) 长江学者和创新团队发展计划资助(IRT0721) 国家科技支撑计划(2007BAF22B05) 上海市科技攻关项目(08DZ1123100) 上海市重点学科建设项目资助(B504) 上海市科技启明星计划(07QA14015)
关键词 CWPSO 集成神经网络 在线优化 CWPSO neural network ensembles online optimization
  • 相关文献

参考文献12

  • 1Kennedy J, Eberhart R C. Particle swarm optimization[C]// Proceeding of the IEEE International Conference on Neural Network. Piscataway. NJ: IEEE, 1995: 1942-1948.
  • 2李炳宇,萧蕴诗,汪镭.PSO算法在工程优化问题中的应用[J].计算机工程与应用,2004,40(18):74-76. 被引量:53
  • 3刘栋,郝婷,刘希玉.基于动态概率变异的Cauchy粒子群优化[J].计算机工程与应用,2007,43(16):77-79. 被引量:5
  • 4Shi Y, Eberhart R C. A modified particle swarm optimizer [C]//IEEE World Congress on Computational Intelligence, Anchorage, Alaska: IEEE, 1998:69-73.
  • 5Eberhart R C, Shi Y. Comparing inertia weights and constriction factors in particle swarm optimization[C]//Proceedings of IEEE International Congress on Evolutionary Computation. Piscataway, NJ: IEEE, 2000: 84-88.
  • 6Van Den Bergh F, Engel Brecht A P. Training product unit networks using cooperative particle swarm optimizers[C]// Proceedings of the Third Genetic and Evolutionary Computation Conference. San Francisco: IEEE, 2001: 126-131.
  • 7Alireza M, Stephane B, Michel A, et al. Cooperative particle swarm optimization of passive microwave devices[J]. International Journal of Numerical Modeling: Electronic Networks, Devices and Fields, 2008, 21(1):151-168.
  • 8侯力.粒子群算法的研究及在汽油调和中的应用[D].上海:华东理工大学,2008.
  • 9谢国学.乙烯原料油及裂解炉优化配置[J].石油化工,2001,30(4):296-301. 被引量:3
  • 10Hansen L K, Salsmon P. Neural Networks Ensembles[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(10): 993-1001.

二级参考文献33

  • 1高海兵,周驰,高亮.广义粒子群优化模型[J].计算机学报,2005,28(12):1980-1987. 被引量:102
  • 2黄文 邹芝光 等.-[J].石油化工,1986,15(1):1-1.
  • 3王宗祥 王延吉 等.-[J].石油化工,1987,16(11):751-751.
  • 4张海燕 王宗祥.-[J].大庆石油学院学报,1985,25(1):1-1.
  • 5Yi Shang.Global Search Methods for Solving Nonlinear Optimization Problems[DJ.Doctor Dissertation.University of Illinois at UrbanaChampaign,1997
  • 6J Kennedy.The particle swarm:social adaptation of knowledge[C].In:Proc IEEE Int Conf on Evolutionary Computation,1997:303~308
  • 7Carlos A,Coello Ceello.A Survey of Constrained Handling Techniques used with Evolutionary Algorithms
  • 8Mitsuo Gen,Runwei Cheng.Genetie algorithms and engineering design [M].New York:John Wiley & Sona,1997
  • 9A Homaifar,S H Y Lai,X Qi.Constrained optimization via genetic algorithms[J].Simulation,1994; 62 (4):242~254
  • 10David M Himmelblau.Applied nonlinear programming[M].New York:McGraw-Hill,1972

共引文献61

同被引文献34

引证文献2

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部