期刊文献+

基于UKF的参数和状态联合估计 被引量:4

Joint Estimation of the Parameter and State Based on UKF
下载PDF
导出
摘要 对于因模型参数失配造成的非线性系统状态估计不准确现象,采用基于不敏卡尔曼滤波(UKF)的参数和状态联合估计方法,即将未知模型参数和状态组成增广的状态向量,用UKF同时获得参数和状态估计值。通过一个离散非线性随机系统的蒙特-卡洛仿真,总结滤波器参数对联合估计器性能的影响及参数选择规律。最后将该方法应用于一个典型的化工反应过程,获得了较好的效果。 The mismatch of model parameter would lead to the inaccuracy of the estimation of states for nonlinear systems. This paper proposes a joint estimation approach based on Unscented Kalman Filter, in which both parameters and states are simultaneously estimated by means of the argument state vector composed of the unknown model parameters and states. By utilizing the Monte Carlo simulation for a discrete nonlinear stochastic system, the influence of the filter parameters on the performance of the joint estimator is analyzed and the updating rule of filter parameters is obtained. Finally, this approach is successfully applied to a typical chemical reaction process.
作者 刘济 顾幸生
出处 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第5期762-767,共6页 Journal of East China University of Science and Technology
基金 上海市基础研究重点项目(08JC1408200) 上海市重点学科建设项目(B504) 国家"863"高技术研究发展计划项目(2009AA04Z141)
关键词 模型失配 不敏卡尔曼滤波 联合估计 滤波器参数 model mismatch unscented Kalman filter joint estimation filter parameter
  • 相关文献

参考文献13

二级参考文献31

  • 1ZhangHongmei DengZhenglong.UKF-based attitude determination method for gyroless satellite[J].Journal of Systems Engineering and Electronics,2004,15(2):105-109. 被引量:7
  • 2孙红岩,毛士艺.多传感器数据的准分层融合法[J].系统工程与电子技术,1995,17(5):66-72. 被引量:5
  • 3孙红岩,毛士艺,林品兴.多传感器数据分层融合的性质[J].电子学报,1996,24(6):55-61. 被引量:29
  • 4Brunke S, Campbell M. Estimation architecture for future autonomous vehicle[ A]. Proceedings of the American Control Conference[ C].Alaska:IEEE, 2002. 1108 - 1114.
  • 5Han J D, Campbell M. Artificial potential guided evolutionary path plan for target pursuit and obstacle avoidance[ A ]. American Institude of Aeronautics and Astronautics Guidance Navigation Control Conference[ C]. Austin:2003.
  • 6Maciejowski J. Modelling and predictive control: enabling technologies for reconfiguration [J]. Annual Review in Control, 1999,23(1):13-23.
  • 7Pesonen U, Steck J, Rokhsaz K. Adaptive neural network inverse controller for general aviation safety [ J ]. Journal of Guidance, Control,and Dynamics,2004,27 (3): 434 -443.
  • 8Julier S, Uhlmann J. Unscented filtering and nonlinear estimation[ J ]. Special Issue on Sequential State Estimation, 2004,92 ( 3 ) :401- 422.
  • 9Spong M, Vidyasagur M. Robot Dynamic and Control [ M ]. New York :John Wiley & Sons,1989.
  • 10Julier S, Uhlmann J K. A general method for approximating nonlinear transformations of probability distributions[R]. RRG, Dept of Engineering Science, University of Oxford, 1996. [O L]. http://www.robots.ox.ac.uk/-siju/

共引文献87

同被引文献26

引证文献4

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部