期刊文献+

量子神经网络在心电图分类中的应用 被引量:3

Neural Network Algorithm and Application of the ECG Classification
下载PDF
导出
摘要 将量子叠加的概念引入前向神经网络,提出了量子神经网络的计算模型。量子神经网络分类器是将量子迁移(量子间隔)概念引入前向神经网络,在隐含层和输出层借鉴量子理论中的量子迁移(量子间隔)思想,神经元采用多个激励函数的叠加,形成对特征空间的多级划分,在训练过程中,量子神经元能够根据需要伸展或坍塌。当输入模糊信息时,该算法可以学习数据集中的不精确性或不确定性,具有较高的分类精度。将该算法应用于心电图诊断中,结果表明具有较好的分类效果和较快的训练速度。 By introducing quantum superposition into neural networks, this paper proposes a model of quantum neural network, in which the units in the hidden and output layers adopt the superposition of multi-level activation functions to obtain the multi-lever partitions of the feature space. During the training, the units can be "collapsed-in" and "spread-out" according to practical requirement. Moreover, this proposed algorithm can learn the inaccuracy and uncertainties from the input of fuzzy information. It is shown from the application for ECG classification that the proposed algorithm has faster training speed and better performance.
出处 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第5期788-792,共5页 Journal of East China University of Science and Technology
关键词 量子叠加 量子神经网络 心电图(ECG) 应用 quantum superposition quantum neural network ECG application
  • 相关文献

参考文献9

  • 1Haykin S. Neural Networks: A Comprehensive Foundation [M]. New York: Macmillan, 1994.
  • 2White H. Learining in artificial neural networks: A statistical perspective [J]. Neural Computation Cambridge, 1989,1(4) : 425-464.
  • 3Arulampalam G, Bouzerdoum A. A generalized feedforward neural network architecture for classification and regression [J]. Neural Networks, 2003, 16(5-6): 561-568.
  • 4Horikawa S, Furuhashi T, UchikawaY. Fuzzy modeling using fuzzy neural networks with the backpropagation algorithm [J]. IEEE Trans Neural Net, 1992, 3:801-806.
  • 5Kasabov N, Kozma R. Neuro-Fuzzy Techniques for Intelligent Information Processing [M]. Heidelberg, Berlin: Springer, 1999,.
  • 6Jang J S R. Adaptive-network based fuzzy inference system [J]. IEEETransSyst Man Cybern, 1993, 23:665-685.
  • 7Martin Plenio B. Basic of quantum computation [J]. Process in Quantum Electronics, 1998,22 : 1-39.
  • 8Shor P W. Algorithms for quantum computation: Discrete logarithms and factoring [C]// Proceedings of the Annual Symposium on Foundations of Computer Science. USA: [s. n. ], 1994:20-26.
  • 9Karayiannis N B, Purushothaman G. Fuzzy pattern classifi- cation using feed-forward neural networks with multilevel hidden units [C]// Proceedings of IEEE International Conference on Neural Networks. USA: IEEE, 1994 : 1577-1582.

同被引文献21

  • 1冯登国,张阳,张玉清.信息安全风险评估综述[J].通信学报,2004,25(7):10-18. 被引量:308
  • 2Graupe D, Principles of Artificial Neural Networks [ M ]. 2nd. River Edge, NJ, USA: World Scientific Publishing Co., Inc., 2007.
  • 3Purushothaman G, Karayiannis N B. Quantum neural net- works (QNNs) : inherently fuzzy feedforward neural net- works [ J ]. Neural Networks, IEEE Transactions on, 1997, 8(3) :679-693.
  • 4Karayiannis N B, Yaohua X. Training Reformulated Ra- dial Basis Function Neural Networks Capable of Identif- ying Uncertainty in Data Classification [ J ]. Neural Net- works, IEEE Transactions on, 2006, 17 (5) : 1222-1234.
  • 5Li J, Li P. Feature difference matrix and QNNs for facial expression recognition[ C]. Control and Decision Confer-ence 2008, Chinese.
  • 6Snyman J. Practical Mathematical Optimization[ M]. New York: Springer, 2005.
  • 7Yuhuan Z, Xiongwei Z, Jinming W, et al. Research on speaker feature dimension reduction based on CCA and PCA[ C]. Wireless Communications and Signal Process- ing (WCSP) , 2010 International Conference on, China.
  • 8韩立群.人工神经网络理论、设计及应用[M].2版.北京:化学工业出版社,2007.
  • 9Gopathy P, Nicolaos B Karayiannis. Quantum Neural Networks (QNN's) : Inherently Fuzzy Feedforward Neural Networks [J]. IEEE Transactions on Neural Networks, 1997, 8 (3) : 679 - 693.
  • 10Arulampalam G, Bouzerdoum A. A generalized feedforward neural network architecture for classification and regression [ J]. Amster- dam: Neural Networks, 2003, 16(5/6) : 561 -568.

引证文献3

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部