期刊文献+

图像制导的目标匹配算法与系统设计 被引量:3

Design and Algorithm for Image Matching Navigation and Guidance
下载PDF
导出
摘要 根据航拍地形图像和目标图像的特点,提出Zoser图像匹配算法用于图像导航与制导。Zoser算法主要由高斯Zoser图像金字塔、24邻域极值点和SIFT128描述符等组成。Zoser算法使用整型数据,结构简单,二级算法独立性好,易于模块化设计;根据这些特点提出了基于FPGA和多DSP的系统设计方案,系统具有较好的实时性和图像匹配目标识别性能。Zoser算法对图像位移、旋转、仿射变换、尺度变化、噪声影响、轻微形变和照度变化有较好的鲁棒性,识别和匹配的准确性较好,速度比SIFT算法提高3倍左右,更适合实时系统。 The novel Zoser image matching algorithm fitting to the aerial images was presented for the image navigation and guidance. Zoser algorithm mainly consists of Gaussian Zoser (step) images Pyramid, 24-neighbor extreme, and 128-dimension SIFT descriptors, which uses integer data, simple image structures, independent sub-algorithms fitting to modularization design, so the design project is a FPGA and multbDSPs real-time system. Zoser algorithm has matc- hing invariance to image scale and rotation, and is shown to provide robust matching across a substantial range of affine distortion, change in 3D viewpoint, addition of noise, and change in illumination. Zoser has high matching precision, and its speed is 3 times quicker than SIFT.
出处 《弹箭与制导学报》 CSCD 北大核心 2009年第5期43-45,52,共4页 Journal of Projectiles,Rockets,Missiles and Guidance
基金 国防预先研究基金资助
关键词 图像匹配 图像金字塔 极值点 SIFT描述符 实时系统 image matching image Pyramid extreme SIFT descriptor real-time system
  • 相关文献

参考文献8

二级参考文献32

共引文献27

同被引文献24

  • 1LOWE D G. Distinctive image from scate-invariant keypoint[ J ]. Inter- national Journal of Omputer Vision,2004,60(2) :20.
  • 2MIKOLA.ICZYK K,SCHMID C. A performance evaluation of local de- scriptors[J]. IEEE Trans. Pattern Analysis and 1Maehine Intelligence, 2005,27(10) :1615-1630.
  • 3KE Y ,SUKTHANKAR R. PCA-sift:A more distinctive representation for local image descriptors [ C ]//Proc. CVRP 2004. [ S. 1. ] : IEEE Press, 2004 : 506 -513.
  • 4赵启兵.王养柱,胡永浩.基于改进SIFT算法的无人机遥感影像匹配[J].光电与控制,2012,19(3):36-39.
  • 5曹娟,李兴玮,林伟廷,等.sIFr特征匹配算法改进研究[J].系统仿真学学报,2010,22(11):2760-2763.
  • 6Smith S, Susan J B. A New Approach to low-level Image Processing [J]. International Journal of Computer Vision (S0920-5691), 1997, 23(1): 45-78.
  • 7FARZIN M, RIKU S. Robust image comer detection through curvature scale space [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1998, 20(12): 1376-1381.
  • 8Chris Harris, Mike Stephens. A combined comer and edge detector [C]//Matthews M. Proceedings of the Fourth Alvey Vision Conference, Manchester: the University of Sheffield Printing Unit, 1988: 147-151.
  • 9Shi J, Tomasi C. Good features to Track [C]// Computer Vision and Pattern Recognition, Seattle, USA, Jun 21-23, 1994: 593-600.
  • 10Lowe D G. Distinctive Image Features from Scale-Invariant Key-points [J]. Internatinal Journal of Computer Vision (S0920-5691), 2004, 60(2): 91-110.

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部