摘要
通过理论证明,给出了判断一个矩阵为H矩阵的实用充分条件及一类实矩阵逆的无穷范数估计公式,并给出数值例子进行了说明.此结果对于判定系统的稳定性、特征值分布、线性方程组迭代解及矩阵范数估计等都具有重要的理论和实际意义.
The conditions to judging a matrix to be an H-matrix and the infinite norm estimation for the inverse of a class of real matrix are given,by logical reasoning.Moreover,the feasibility of the result is shown by a numerical example.It is significant in many fields,such as the stability of control system,the distribution of characteristic value,the iterative solutions of the systems of linear equations and the norm estimation for the matrices.
出处
《陕西科技大学学报(自然科学版)》
2009年第5期145-149,157,共6页
Journal of Shaanxi University of Science & Technology
基金
国家自然科学基金资助项目(10071048)
宝鸡文理学院重点科研资助项目(ZK08105)
关键词
非奇异H矩阵
对角占优
严格对角占优
无穷范数
nonsingular H-matrix
diagonal dominance
strictly diagonal dominance
infinite norm