期刊文献+

排列函数和组合函数的性质与应用

Properties and Applications of Permutation and Combinatorial Functions
下载PDF
导出
摘要 引入了排列函数与组合函数,推广了排列数与组合数的概念,获得了排列函数与组合函数的若干性质,得到了广义组合(或排列)数与普通组合(或排列)数的关系式.依据推广的二项式级数获得了一批新的组合恒等式.推导出了关于排列函数、组合函数的线性表示式、表示式系数的递推关系式和系数新公式,获得了等幂和的四个表示公式. This paper introduces permutation and combination functions. It extends the conception of permutation and combinatorial numbers, obtains some properties of permutation and combination functions, and gets the relationship between generalized and ordinary combinatorial (permutation) numbers. Some new combinatorial identities are also obtained according to the generalized binomials, we derives the linear expression of about permutation and combination functions, the recurrence relation of the expressions" coefficients and the new coefficients formula, as well as four expression of sum of equal powers.
作者 盛志荣
出处 《宁波教育学院学报》 2009年第5期70-75,87,共7页 Journal of Ningbo Institute of Education
关键词 排列函数 组合函数 广义排列数 广义组合数 组合恒等式 higher vocational education academic-practical teachers construction of academicpractical teachers
  • 相关文献

参考文献3

二级参考文献12

  • 1CHEON Gi-sang, KIM Jin-soo. Stirling matrix via Pascal matrix [J]. Linear Algebra Appl., 2001, 329: 49-59.
  • 2BAYAT M, TEIMOORI H. The linear algebra of the generalized Pascal functional matrix [J]. Linear Algebra Appl., 1999, 295: 81-89.
  • 3COMET L. Advanced Combinatorics [M]. Boston: D.Reidel Pub. Co., 1974.
  • 4BRAWER R, PIROVINO M. The linear algebra of the Pascal matrix [J]. Linear Algebra Appl., 1992, 174:13-23.
  • 5CALL G S, VELLEMAN D J. Pascal's matrices [J]. Amer. Math. Monthly, 1993, 100: 372-376.
  • 6ZHANG Zhi-zheng, LIU Mai-xue. An extension of the generalized Pascal matrix and its algebraic properties [J]. Linear Algebra Appl., 1998, 271: 169-177.
  • 7ZHAO Xi-qiang, WANG Tian-ming. The algebraic properties of the generalized Pascal functional matrices associated with the exponential families [J]. Linear Algebra Appl., 2000, 318: 45-52.
  • 8GOULD H W. Combinatorial Identities [M]. Morgantown, West Virginia, 1972.
  • 9LOEB D E, ROTA G C. Formal power series of logarithmic type [J]. Adv. Math., 1989, 75: 1-118.
  • 10WILF H S. Generating functionology. Second edition [M]. San Diego: Academic Press, 1994.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部