期刊文献+

基于视频序列的目标检测与跟踪技术研究 被引量:7

A Study of Object Detecting and Tracking Based on Video Sequences
下载PDF
导出
摘要 针对计算机智能监控环境,文中提出一种改进的基于像素灰度出现概率最大值的背景建立方法,该方法克服了光照变化对背景重建的影响,使得背景建立的时间大大缩短。并采用一种新的自适应背景更新算法获得背景图像以进行目标检测,这种方法较好地克服了IIR法更新速度难以取值的缺点,使得更新速率可以达到自适应的效果;在目标跟踪阶段,使用基于卡尔曼滤波的方法对检测出的运动目标进行跟踪,由于卡尔曼预测可以大大减小特征匹配的搜索范围,因此提高了跟踪的实时性。实验结果表明,该文的算法能够快速有效地获得、更新背景,并且能够实时地对运动目标进行跟踪。 This thesis was focused on intelligent surveillance. It proposed an improved method of building background, which is based on the maximum probability value of the pixel. This method overcame the light change on the background of the impact of the reconstruction, making the background of the establishment of the time significantly shortened. Then, adopted a new self- adaptive background updating algorithm to gain a background image for the purpose of target detecting, the new method was proved better than IIR method , for it could obtain an adaptive effect on updating rates; In order to track the target detected, the Kalman filtering algorithm was used. The results showed that this algorithm could obtain and update background image in a short time. It also could track the detected target in real - time.
出处 《计算机技术与发展》 2009年第11期179-182,共4页 Computer Technology and Development
基金 湖北省自然科学基金(2008CDB311)
关键词 背景模型 目标检测 目标跟踪 background model target detecting target tracking
  • 相关文献

参考文献11

  • 1Lipton A, Fujiyoshi H, Patil R. Moving target classification and tracking from real - time video[C]//In: Proe IEEE. Workgroup on Applications of Computer Vision. Princeton, NJ:[s. n. ],1998:8-14.
  • 2Horn B K P,Schunek B G. Determining optical flow[J ]. Artificial Intelligence, 1981,17 ( 1 - 3 ) : 185 - 203.
  • 3Haritaoglu l,David H, Davis L S. Real - time surveillance of people and their activities[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22 (8):809- 830.
  • 4侯伟,卢炎麟,郑河荣,潘翔,陈永清.固定背景下的视频分割及在交通视频流的应用[J].计算机技术与发展,2008,18(9):191-193. 被引量:8
  • 5侯志强,韩崇昭.基于像素灰度归类的背景重构算法[J].软件学报,2005,16(9):1568-1576. 被引量:97
  • 6杨俊红,张强,周兵.视频序列中的运动目标检测[J].微计算机信息,2007,23(19):226-227. 被引量:19
  • 7Comaniciu D, Ramesh V, Meer P. Kernel- based Object Tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(5) :564 - 577.
  • 8Hager G D,Dewan M,Stewart C V. Multiple Kernel Tracking with SSD[C]//In: Proc IEEE Conference on Computer Vision and Pattern Recognition. [ s. l. ] : [ s. n. ], 2004: 790 - 797.
  • 9Dai Y P,Yu G H,Hirasawa K. New Development on Tracking Algorithm with Derivation Measurement [ C]//In: Proc IEEE International Conference on System, Man and Cybernetics. [s. l. ] : [s. n. ] ,2001:3181 - 3186.
  • 10Haykin, Simon S. Adaptive filter theory[M]. Beijing: Publishing House of Electronics Industry,2002.

二级参考文献38

  • 1危水根,陈震,黎明.一种基于时间差分运动检测的改进方法[J].南昌航空工业学院学报,2005,19(3):15-19. 被引量:6
  • 2种衍文,江柳,沈未名.基于变化检测的视频对象提取及后继帧的对象跟踪[J].武汉大学学报(信息科学版),2006,31(8):748-751. 被引量:2
  • 3林海涵,唐慧明.基于视频的车辆检测和分析算法[J].江南大学学报(自然科学版),2007,6(3):323-326. 被引量:6
  • 4Horn BK, Schunk BG. Determining optical flow. Artificial Intelligence, 1981,17(1-3): 185-203.
  • 5Smith SM, Brady JM. ASSET-2: Real-Time motion segmentation and shape tracking. IEEE Trans. on PAMI, 1995,17(8):814-820.
  • 6Neff A, Colonnese S, Russo G, Talone P. Automatic moving object and background separation. Signal Processing, 1998,66(2):219-232.
  • 7Meier T, Ngan KN. Automatic segmentation of moving objects for video object plane generation. IEEE Trans. on Circuits and Systems for Video Technology, 1998,8(5):525-538.
  • 8Jolly MPD, Lakshmanan S, Jain AK. Vehicle segmentation and classification using deformable templates. IEEE Trans. on PAMI,1996,18(3):293-308.
  • 9Ridder C, Munkelt O, Kirchner H. Adaptive background estimation and foreground detection using Kalman-filter. In: Proc. of the Int'l Conf. on Recent Advances in Mechatronics, ICRAM'95. UNESCO Chair on Mechatronics, 1995. 193-199.
  • 10Friedman N, Russell S. Image segmentation in video sequences: A probabilistic approach. In: Proc. of the 13th Conf. on Uncertainty in Artificial Intelligence (UAI). San Francisco, 1997.

共引文献123

同被引文献66

引证文献7

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部