期刊文献+

Sobolev方程扩展混合元方法的L^∞估计

L^∞ estimates for expanded mixed finite element methods for the Sobolev equations
下载PDF
导出
摘要 Sobolev方程初边值问题的扩展混合元方法是传统混合元方法的一种推广,它能同时逼近未知函数、梯度、流量,较好地刻画了具有混合边界条件的Sobolev方程初边值问题,同时避免了对小系数进行求逆,从而得到了逼近未知函数的拟最优的L∞估计。 The expanded mixed methods for the intial-boundary value problem of Sobolev equations is considered a method based on traditional mixed element method. The method also approximates unknown function, gradient and flow and it could simulate the intial-boundary value of Sobolev equations and avoid solving the inverse of little coefficient. Optimal order error estimate is achieved according to the study for the scalar unknown in L^∞-norms.
出处 《山东建筑大学学报》 2009年第5期426-428,433,共4页 Journal of Shandong Jianzhu University
基金 山东省优秀中青年科学家奖励基金(2008BS05008)
关键词 SOBOLEV方程 初边值问题 扩展混合元方法 拟最优L∞误差估计 Sobolev equations initial-boundary value problem expanded mixed element method optimal L^∞ error estimate
  • 相关文献

参考文献2

二级参考文献3

  • 1J. C. Nédélec. A new family of mixed finite elements in ?3[J] 1986,Numerische Mathematik(1):57~81
  • 2Junping Wang.Asymptotic expansions andL ∞-error estimates for mixed finite element methods for second order elliptic problems[J].Numerische Mathematik.1989(4)
  • 3R. Scholz.OptimalL ∞-estimates for a mixed finite element method for second order elliptic and parabolic problems[J].Calcolo.1983(3)

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部