期刊文献+

蒸气压缩制冷在高热流电子器件冷却中的应用 被引量:13

Application of vapor compression refrigeration to high heat flux microelectronics cooling
下载PDF
导出
摘要 由于电子芯片技术的高速发展,集成度不断提高,芯片功耗大和散热困难的问题也凸现出来,传统的散热方法在一些超高热流密度场合已经不能有效为芯片提供冷却。蒸气压缩制冷可望成为现代高热流电子器件及系统冷却的重要技术,国外主要电子系统公司均已采用蒸气压缩制冷来实现电子系统冷却。要使蒸气压缩制冷在电子系统中得到广泛应用,必须进一步研发高效紧凑的微型制冷压缩机、研制能与电子芯片紧密结合的微型蒸发器以及高效的冷凝器。 As the fast development of electronic technology and the integration level of chips, it appears that the chips' power is increasing greatly and hard to cool them by traditional chip cooling methods. Especially when faced super high heat flux density,mainly current cooling technology may have inadequate capacity to handle the problems. Vapor compression refrigeration (VCR) technology may be a promising key technology for high power microelectronic cooling. VCR technology has been used by many famous electronic equipments manufacturer. Miniature refrigeration compressor, miniature evaporator and miniature condenser must be further researched so as to promote the wide application of VCR to electronic cooling.
机构地区 北京工业大学
出处 《制冷与空调》 2009年第5期5-9,52,共6页 Refrigeration and Air-Conditioning
关键词 芯片冷却 蒸气压缩式制冷 强化换热 压缩机 高热流密度 冷凝器 蒸发器 chip-cooling vapor compression refrigeration enhanced heat transfer compressor high heat flux density condenser evaporator
  • 相关文献

参考文献16

  • 1李腾,刘静.芯片冷却技术的最新研究进展及其评价[J].制冷学报,2004,25(3):22-32. 被引量:66
  • 2Viswannath R, Nair R, Wakharkar V, et al. Emerging directions for packaging technologies. Intel Technology Journal, 2002 (6): 61-74.
  • 3宗朝晖.现代电力电子的冷却技术[J].变流技术与电力牵引,2007(4):6-12. 被引量:19
  • 4Ma C F. Liquid jet impingment heat transfer wich or without boiling//Proc of 10th Natl Heat Transfer conf. Italy, 1992:35-60.
  • 5DS斯坦伯格.电子冷却技术.北京:航空工业出版社,1989:175-180.
  • 6M Davis, R Weymouth, P Clarke. Thermoelectric CPU Cooling using High Efficiency Liquid Flow Heat Exchangers[EB/OL]. Hydrocool Pty Ltd. 2005.6[2008- 10-5] http://www. hvdrocool. com.
  • 7Patrick E Phelan, Victor A Chiriac, Tien-Yu Tom Lee. Current And Future Miniature Refrigeration Cooling Technologies For High Power Microelectronics. IEEE Transactions On Components And Packaging Technologies, 2002,25 (3) : 356-365.
  • 8Patrick E Phelan,Jason Swanson. Designing a mesoscale vapor-compression refrigerator for cooling high-power microelectronics // The Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena In Electronic Systems (IEEE Cat No. 04CH37543). 2004,1 : 218-223.
  • 9Chiriac F, Chiriac V. An alternative Method for the Cooling of Power Microelectronics Using Classical Refrigeration// 2007 International Conference on Thermal Issues in Emerging Technologies: Theory and Application(IEEE Cat No. 07EX1655). 2007:1-5.
  • 10Richard C Chu. The Perpetual Challenges of Electronics CoolingThe Perpetual Challenges of Electronics Cooling Technology for Computer Product. Applications Technology for Computer Product Applications National Taiwan University Presentation, Taipei, Taiwan, China, 2003.

二级参考文献58

  • 1John Mookken.未来汽车——开发下一代功率模块的动力[J].电力电子,2005,3(6):14-16. 被引量:1
  • 2[39]Glezer A, Amitay M. Synthetic jets. Annual Review of Fluid Mechanics, 2002, 34: 503-529
  • 3[40]http://widget.ecn.purdue.edu/~CTRC/research/projects/Ultrasonic%20piezoelectric/
  • 4[41]Heffington SN, Black WZ, Glezer A. Vibration-induced droplet atomization heat transfer cell for high-heat flux applications. Thermomechanical Phenomena in Electronic Systems -Proceedings of the Intersociety Conference, 2002, 408-412
  • 5[43]Chen G, Dresselhaus MS, Dresselhaus G, et al. Recent developments in thermoelectric materials. International Materials Reviews, 2003, 48: 45-66
  • 6[44]Caillat T, Fluerial JP, Snyder GJ. Thermoelectric properties of the incommensurate layered semiconductor GexNbTe2. Journal of Materials Research, 2000, 15: 2789-2793
  • 7[45]El-Genk MS, Saber HH. High efficiency segmented thermoelectric unicouple for operation between 973 and 300 K. Energy Conversion and Management, 2003, 44: 1069-1088
  • 8[46]Jeffrey SG, Tristan SU. Thermoelectric efficiency and compatibility. Phys. Rev. Lett., 2003, 91: 148301
  • 9[47]Miner A, Majumdar A, Ghoshal U. Thermo-electro-mechanical refrigeration using transient thermoelectric effects. Appl. Phys. Lett., 1999, 75: 1176-1178
  • 10[48]Landecker K. J. Phy. C: Solid St. Phys., Improvement of the performance of Peltier junctions for thermoelectric cooling, 1970, 3: 2146-2150

共引文献81

同被引文献106

引证文献13

二级引证文献98

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部