期刊文献+

某些单叶调和函数类的解析特征 被引量:6

On the Analytic Characteristic Properties for Some Univalent Harmonic Functions
下载PDF
导出
摘要 考虑单位圆内单叶调和函数的某些子类SH*(1λ,2λ;α),TSH*(1λ,2λ;α)的单叶解析性质,单叶性等价条件与拟共形映照之间的关系,以及该函数类中的凸像半径等问题,推广和改进ztürk与Jahangiri等人的相应结果. The univalent analytic properties,equivalent conditions,the relationship between quasiconformal mappings and radius of convexity for some subclasses of univalent harmonic functions in the unit disk are investigated.Our results improve and extend the corresponding ones by ztürk and Jahangiri.
出处 《华侨大学学报(自然科学版)》 CAS 北大核心 2009年第6期704-708,共5页 Journal of Huaqiao University(Natural Science)
基金 福建省自然科学基金项目(2008J0195)
关键词 单叶调和函数 星象函数 拟共形映照 凸像半径 univalent harmonic function starlike function quasiconformal mappings radius of convexity
  • 相关文献

参考文献8

  • 1CLUNIE J, SHEIL-SMALL T. Harmonic univalent functions[J]. Ann Acad Sci I Math, 1984,9A(1)3-25.
  • 2黄心中.给定复伸张单叶调和映照的面积偏差[J].华侨大学学报(自然科学版),2007,28(2):208-211. 被引量:6
  • 3吴瑞溢,黄心中.Salagean类单叶调和函数的特征[J].华侨大学学报(自然科学版),2008,29(2):308-311. 被引量:6
  • 4SILVERMAN H, SILVIA E M. Subclasses of harmonic univalent functions[J]. New Zeal J Math, 1999,28(2) :275- 284.
  • 5OZTURK M, YALGIN S, YAMANKARADENIZ M A subclass of harmonic univalent functions with negative coefficients[J]. Appl Math Comput, 2003,142(2/3) : 469-476.
  • 6OZTURK M, YALCIN S, YAMANKARADENIZ M. Convex subclass of harmonic starlike functions[J]. Appl Math Comput, 2004,154(2) : 449-459.
  • 7JAHANGIRI J M, SILVERMAN H. Harmonic close-to-convex mappings[J]. J Appl Math and Stochastic Analysis, 2002,15(1) :23-28.
  • 8JAHANGIRI J M. Harmonic functions starlike in the unit disk[J]. J Math Anal, 1999,235(2):470-477.

二级参考文献12

  • 1HENGARTNER W, SCHOBER G. Harmonic mappings with given dilatation[J]. J London Math Soc, 1986,33(2) :473-483.
  • 2CLUNIE J, SHEILSMALL T. Harmonic univalent functions[J]. Ann Acad Sci Fenn Ser, 1984,9:3-25.
  • 3HALL R R. On an inequality of E. Heinz[J]. J Analyse Math, 1983,42: 185-198.
  • 4HENGARTNER W, SCHOBER G. Univalent harmonic functions[J]. Trans Amer Math Soc, 1987,299(1) : 1-31.
  • 5DUREN P. Harmonic mappings in the plane[M]. London: Cambridge Univ Press, 2004.57-135.
  • 6CLUNIE J,SHELL-SMALL T.Harmonic univalent functions[J].Ann Acad Sci Fenn Ser A I Math,1984(9):3-25.
  • 7CHEN H,GAUTHIER P M,HENGARTNER W.Bloch constants for planar harmonic mappings[J].Poc Amer Math Soc,2000,128(11):3231-3240.
  • 8PAVLOVIC M.Boundary correspondence under harmonic quasiconformal homeomorphisms of the unit disk[J].Ann Acad Sci Fenn Math,2002(27):365-372.
  • 9KALAJ D,PAVLOVIC M.Boundary correspondence under quasiconformal harmonic diffeomorphisms of a half-plane[J].Ann Acad Sci Fenn Math,2005,(30):159-165.
  • 10SALAGEAN G S.Subclass of univalent functions[M].New York:Springer-Verlag,1983:362-372.

共引文献9

同被引文献25

  • 1LIU MingSheng School of Mathematical Sciences, South China Normal University, Guangzhou 510631, China.Estimates on Bloch constants for planar harmonic mappings[J].Science China Mathematics,2009,52(1):87-93. 被引量:16
  • 2黄心中.给定复伸张单叶调和映照的面积偏差[J].华侨大学学报(自然科学版),2007,28(2):208-211. 被引量:6
  • 3J. Clunie and T. Sheil - Small. Harmonic univalent func- tions[ J]. Ann. Acad. Sci. I Math, 1984,9A :3 - 25.
  • 4M. 0zttirk, S. Yalgin and M. Yamankaradeniz. A subclass of harmonic univalent functions with negative coefficients [ J ]. Appl. Math. Comput,2003,142:469 - 476.
  • 5M. 0ztttrk, S. Yalin and M. Yamankaradeniz. Convex subclass of harmonic starlike functions [ J ]. Appl. Math. Comput,2004,154:449 - 459.
  • 6J. M. Jahangiri and H. Silverman. Harmonic close - to - convex mappings[ J]. J. Appl. Math. and Stochastic Anal- ysis ,2002,15 ( 1 ) :23 - 28.
  • 7J. M. Jahangiri. Harmonic functions starlike in the unit disk[ J]. J. Math. Anal, 1999,235:470 - 477.
  • 8CLUNIE J, SHELL-SMALL T. Harmonic univalent functions[J]. Ann Acad Sci Fenn Ser A I Math, 1984,9:3-26.
  • 9PAVLOVIC M. Boundary correspondence under harmonic quasieonformal homeomorphisms of the uint disk[J]. Ann Acad Sci Fenn Math, 2002,27 : 365-372.
  • 10KALAJ D. Quasiconformal harmonic functions between convex domains[J]. Publications De L' Institut Mathema- tique, 2004,76 (90) : 3-20.

引证文献6

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部