期刊文献+

Source Type Solutions of a Fourth Order Degenerate Parabolic Equation

Source Type Solutions of a Fourth Order Degenerate Parabolic Equation
原文传递
导出
摘要 In this paper, we study a generalized thin film equation which is relevant to capillary driven flows of thin films of power-law fluids. We prove that the generalized thin film equation in dimension d ≥ 2 has a unique C^1 source type radial self-similar nonnegative solution if 0 〈 n 〈 2p - 1 and has no solution of this type if n ≥ 2p - 1.
出处 《Journal of Partial Differential Equations》 2009年第3期205-217,共13页 偏微分方程(英文版)
基金 The research is supported in part by the National Natural Science Foundation of China (No. J0630104).Source Type SoLutions of a Fourth Order Degenerate Parabolic Equation
  • 相关文献

参考文献1

二级参考文献8

  • 1[1]King, J. R., Two generalisations of the thin film equation, Math. Comput. Modelling, 34:7-8(2001),737-756.
  • 2[2]Tayler A. B., Mathematical Models in Applied Mechanics, Clarendon, Oxford, 1986.
  • 3[3]Beretta, E., Bertsch, M. & Dal Passo, R., Nonnegative solutions of a fourth order nonlinear degenerate parabolic equation, Arch. Rational Mech. Anal., 129:2(1995), 175-200.
  • 4[4]Bai, F., Elliott, C. M., Gardiner, A., Spence, A. & Stuart, A. M., The viscous Cahn-Hilliard equation,part Ⅰ: computations, Nonlinearity, 8(1995), 131-160.
  • 5[5]Elliott, C. M. & Stuart, A. M., The viscous Cahn-Hilliard equation. Part Ⅱ Analysis, J. Diff. Equations,128(1996), 387-414.
  • 6[6]Chang, K., Critical Point Theory and Its Applications, Shanghai Sci. Tech. Press, Shanghai, 1986.
  • 7[7]Simon, J., Compact sets in the space Lp(0,T; B), Ann. Math. Pure Appl., 146(1987), 65-96.
  • 8[8]Chen, Y. & Wu, L., Second Order Elliptic Equations and Elliptic Systems, Science Press, Beijing,1991.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部