期刊文献+

Asymptotic Behavior of Solution to Some Models Involving Two Species All with Chemotaxis

Asymptotic Behavior of Solution to Some Models Involving Two Species All with Chemotaxis
原文传递
导出
摘要 This paper is concerned with the asymptotic behavior of solution to the following model involving two species all with chemotaxis:{αp/αt=Dp△(p△lnp/w),αp/αt=Dq△(q△lnq/w),αw/αt=βp-δw,p△ln(p/w).^-n=q△ln(q/w).^-n=0.We prove that the solution exists globally asβ ≥ 0. Asβ 〈 0, whether the solution exists globally or not depends on the initial data. By function transformation and compari- son, the asymptotical behavior of the solution is studied.
出处 《Journal of Partial Differential Equations》 2009年第3期266-281,共16页 偏微分方程(英文版)
基金 This work is supported by the National Natural Science Foundation of China (10471108).
  • 相关文献

参考文献16

  • 1Keller E F, Segel L A. Initiation of slime mold aggregation viewed as an instability. Journal of Theoretical Biology, 1970, 26: 339-415.
  • 2Hillen T, Painter K J. A parabolic model with bounded chemotaxis-prevention of overcrowding. Adv Appl Math, 2001, 26: 280-301.
  • 3Hillen T, Stevens A. Hyperbolic models for chemotaxis in 1-D. Nonl Anal: Real World Appl, 2000, 1(3): 409-433.
  • 4Nagai T. Global existence of solutions to a parabolic systems for chemotaxis in two space dimentions. Nonl Anal Theory, Methods & Applications, 1997, 30(8): 5381-5388.
  • 5Painter K J, Sherratt J A. Modelling the movement of interacting cell populations. J Theor Biol, 2003, 225: 327-339.
  • 6Painter K J, Hillen T. Models for chemosensitive movement. Canadian Appl Math Quart, 2003, 10(4): 501-543.
  • 7Stevens A. Trail following and aggregation of myxobacteria. J Biol Systems, 1995, 3: 1059- 1068.
  • 8Stevens A. A stochastic cellular automaton, modelling gliding and aggregation of myxobacteria. SIAM J Appl Math, 2000, 61: 172-182.
  • 9Othmer H G, Sevens A. Aggregation, blowup and collapse: the ABC's of taxis in reinforced random walks. SlAM J Appl Math, 1997, 51: 1044-1081.
  • 10Sleeman B D, Levine H A. Partial differential equations of chemotaxis and angiogenesis. Mathematical Methods in the Applied Science, 2001, 24: 405-426.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部