期刊文献+

Seismic wavelet estimation via a system identification method

Seismic wavelet estimation via a system identification method
下载PDF
导出
摘要 On the assumption that the wavelet is causal and nonminimum phase, an autoregressive moving average (ARMA) model is introduced to fit the seismic trace. Seismic wavelet extraction is converted to parameters estimation of the ARMA model. Singular value decomposition (SVD) of an appropriate matrix formed by autocorrelation is exploited to determine the autoregressive (AR) order, and the cumulant-based SVD-TLS (total least squares) approach is proposed to obtain the AR parameters. The author proposes a new moving average (MA) model order determination method via combining the information theoretic criteria method and higher-order cumulant method. The cumulant approach is used to achieve the MA parameters. Theoretical analysis and numerical simulations demonstrate the feasibility of the wavelet extraction approach. On the assumption that the wavelet is causal and nonminimum phase, an autoregressive moving average (ARMA) model is introduced to fit the seismic trace. Seismic wavelet extraction is converted to parameters estimation of the ARMA model. Singular value decomposition (SVD) of an appropriate matrix formed by autocorrelation is exploited to determine the autoregressive (AR) order, and the cumulant-based SVD-TLS (total least squares) approach is proposed to obtain the AR parameters. The author proposes a new moving average (MA) model order determination method via combining the information theoretic criteria method and higher-order cumulant method. The cumulant approach is used to achieve the MA parameters. Theoretical analysis and numerical simulations demonstrate the feasibility of the wavelet extraction approach.
出处 《Earthquake Science》 CSCD 2009年第5期487-492,共6页 地震学报(英文版)
基金 supported by the National High Technology Research and Development Program of China (863 Program, No.2007AA09Z301) the Graduate Innovation Fund of China University of Petroleum and National Natural Science Foundation of China (40974072)
关键词 seismic wavelet ARMA model SVD higher order cumulant information theoretic criteria seismic wavelet ARMA model SVD higher order cumulant information theoretic criteria
  • 相关文献

参考文献2

二级参考文献16

  • 1陈滨宁,张贤达.高斯ARMA噪声中非因果非最小相位系统的辨识[J].电子学报,1996,24(4):24-28. 被引量:5
  • 2Lazear G D. Mixed-phase wavelet estimation using fourth-order cumulants. Geophysics, 1993, 58 (7):1042-1051
  • 3Velis D R and Ulrych T J. Simulated annealing wavelet estimation via fourth-order cumulant matching.Geophysics, 1996,61(6) :1939-1948
  • 4Zhang X D et al. FIR system identification using higher-order cumulants alone. IEEE Trans on Signal Processing, 1994,42 (10) : 2854 - 2858
  • 5Tugnait J K. Fitting non-causal autoregressive signal plus noise model to noisy non-Gaussian linear processes. IEEE Trans on Automatic Control, 1987,32 (6):547-552
  • 6Giannakis G B and Swami A. On estimating non-causal non-minimum phase ARMA models of non-Gaussian process. IEEE Trans on ASSP, 1990,38 ( 3 ): 478-495
  • 7Cadzow J A. Spectral estimation: An overdetermined rational model equation approach. Proceedings of the IEEE,1982,70(9):907-939
  • 8Zhang X D et al. Singular value decomposition-based MA order determination of non-Gaussian ARMA models. IEEE Trans on Signal Processing, 1993,41 :2657-2664
  • 9Leon Cohen. Time-Frequency Analysis: Theory and Application. USA: Prentice Hall,1995.
  • 10Schimicek P, Zeitlhofer J. etc. Automatic Sleep-Spindle Detection Procedure: Aspects of Reliability and Validity. Clinical Encephalography, 1994 Vol. 25 No. 1 p26-29.

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部