摘要
证明了对称性全局统计分析方法中的几个重要定理,保证了任意系统函数能够进行正交对称分解,确保了系统函数方差分解公式成立,这些是对称性全局统计分析方法的核心基石.通过考察对称函数在整个系统函数中所起作用的大小,达到认识系统函数对称性的目的.实例表明,将贡献率的Monte-Carlo计算值作为全局分析中对称函数的敏感性度量指标,可以较好地刻画系统函数的对称性.
This research guaranteed orthogonal symmetry demonstration to any system function, ensured the formula of demonstration to system function variance. They are the kernel and foundation stone of statistical analysis of global symmetry. By studying how these symmetry functions work in the whole system function, the symmetry of system function can be understood better. As illustrated by the examples, it showed the symmetry of system function clearly by using the Monte-Carlo calculated value of contribution rate as the global sensitivity index of symmetry function.
出处
《华东师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2009年第5期127-137,共11页
Journal of East China Normal University(Natural Science)
基金
国家自然科学基金(10571045)
教育部高等学校博士点基金(44k55050)
关键词
类对称算符
正交幂等系统
对称函数
全局统计分析
class idempotent function
systems of orthogonal idempotents
symmetry functions
global statistical analysis