期刊文献+

对称性全局统计分析中的定理证明 被引量:9

Proof procedure of some theories in statistical analysis of global symmetry
下载PDF
导出
摘要 证明了对称性全局统计分析方法中的几个重要定理,保证了任意系统函数能够进行正交对称分解,确保了系统函数方差分解公式成立,这些是对称性全局统计分析方法的核心基石.通过考察对称函数在整个系统函数中所起作用的大小,达到认识系统函数对称性的目的.实例表明,将贡献率的Monte-Carlo计算值作为全局分析中对称函数的敏感性度量指标,可以较好地刻画系统函数的对称性. This research guaranteed orthogonal symmetry demonstration to any system function, ensured the formula of demonstration to system function variance. They are the kernel and foundation stone of statistical analysis of global symmetry. By studying how these symmetry functions work in the whole system function, the symmetry of system function can be understood better. As illustrated by the examples, it showed the symmetry of system function clearly by using the Monte-Carlo calculated value of contribution rate as the global sensitivity index of symmetry function.
出处 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第5期127-137,共11页 Journal of East China Normal University(Natural Science)
基金 国家自然科学基金(10571045) 教育部高等学校博士点基金(44k55050)
关键词 类对称算符 正交幂等系统 对称函数 全局统计分析 class idempotent function systems of orthogonal idempotents symmetry functions global statistical analysis
  • 相关文献

参考文献8

  • 1SOBOL I M, TARANTOLA S, GATELLI D, et al. Estimating the approximation error when fixing unessential facters in global sensitivity analysis[J]. Reliability Engineering and System Safety, 2007, 92:957-960.
  • 2SOBOL I M. Theorems and examples on high dimensional model representation[J]. Reliability Engineering and System Safety, 2003, 79: 187-193.
  • 3SOBOL I M, LEVITAN Yu L. On the use of variance reducing multipliers in Monte-Carlo computations of a global sensitivity index[J]. Computer Physics Communications, 1999, 117: 52-61.
  • 4SOBOL I M. Global sensitivity indices for nonlinear mathematical models and their Monte-Carlo estimates[J]. Mathematics and Computers in Simulation~ 2001, 55: 271-280.
  • 5王伯英.多重线性代数[M],北京:北京师范大学出版社,1985.
  • 6陈雪平,潘长缘,张应山.多元函数空间的对称分解[J].数学的实践与认识,2009,39(2):167-173. 被引量:6
  • 7ZHANG Y S , PANG S Q , JIAO Z M , ZHAO W Z. Group partition and systems of orthogonal idempotents[J]. Linear Algebra and its Application, 1998, 278: 249-262.
  • 8潘长缘,陈雪平,张应山.正交幂等系统的构造[J].华东师范大学学报(自然科学版),2008(5):51-58. 被引量:6

二级参考文献4

  • 1杨运峰,张应山.k阶k个线性无关方阵同时相似对角化的存在性条件[J].河南广播电视大学学报,1996,11(Z1):34-35. 被引量:1
  • 2唐有棋.对称性原理[M].科学出版社,1977.
  • 3王伯英.多重线性代数[M].北京师范大学出版社,1985.
  • 4Zhang Y S, Pang S Q, Jiao Z M, Zhao W Z. Group partition and systems of orthogonal idempotents[J]. Linear Algebra and Its Applications, 1998,278 : 249-262.

共引文献12

同被引文献22

引证文献9

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部