摘要
利用微分不等式理论,研究了二次方程的奇摄动D irichelet边值问题。在适当的条件下,构造出具体的上下解,得出内层解的存在性和渐近性态。最后还讨论了该问题的角层情况。
The boundary value problem for singularly perturbed equation of second degree by means of differential inequality theories is studied.Under suitable assumptions,specific upper and lower solutions were constructed,and the existence and asymptotic behavior of inner layer solutions were obtained.Finally the problem of corner layer for singularly perturbed equation of second degree is discussed too.
出处
《南昌大学学报(理科版)》
CAS
北大核心
2009年第4期312-314,323,共4页
Journal of Nanchang University(Natural Science)
基金
国家自然科学基金资助项目(10671070)
吉安市指导性重点科技计划项目(JSK0528)
关键词
二次方程
奇摄动
内层
一致有效
形式渐近解
角层
Second degree equation
singular perturbation
inner layer
uniform validity
formal asymptotic solutions
corner layer