期刊文献+

二次奇摄动方程内层解的渐近性态

The Asymptotic Behavior of Inner Layer Solutions for Singularly Perturbed Equation of Second Degree
下载PDF
导出
摘要 利用微分不等式理论,研究了二次方程的奇摄动D irichelet边值问题。在适当的条件下,构造出具体的上下解,得出内层解的存在性和渐近性态。最后还讨论了该问题的角层情况。 The boundary value problem for singularly perturbed equation of second degree by means of differential inequality theories is studied.Under suitable assumptions,specific upper and lower solutions were constructed,and the existence and asymptotic behavior of inner layer solutions were obtained.Finally the problem of corner layer for singularly perturbed equation of second degree is discussed too.
出处 《南昌大学学报(理科版)》 CAS 北大核心 2009年第4期312-314,323,共4页 Journal of Nanchang University(Natural Science)
基金 国家自然科学基金资助项目(10671070) 吉安市指导性重点科技计划项目(JSK0528)
关键词 二次方程 奇摄动 内层 一致有效 形式渐近解 角层 Second degree equation singular perturbation inner layer uniform validity formal asymptotic solutions corner layer
  • 相关文献

参考文献4

二级参考文献15

  • 1刘树德.具有转向点的奇摄动非线性边值问题的非单调内部层性质[J].高校应用数学学报(A辑),1994,9(2):146-153. 被引量:10
  • 2[1]GLIZER V Y, FRIDMAN E. A control of linear singularly perturbed system with small state delay[J]. J Math Anal Appl,2000, 250(1):49-85.
  • 3[2]BUTUZOV V F,NEFEDOV N N,SCHNEIDER K R. Singularly perturbed elliptic problems in the case of exchange of stabilities[J].J Differential Equations,2001,169:373-395.
  • 4[3]KELLEY W G. A singular perturbation problem of carrier and pearson[J]. J Math Anal Appl,2001,255:678-697.
  • 5[4]De JAGER E M, JIANG F. The theory of singular pertubation[M]. Amsterdam:Nort-Holland Publishing Co,1996.
  • 6O'Malley R E. Introduction to singular perturbations[M]. New York : Academic Press,1974.
  • 7O'Malley R E. On a boundary value problem for a nonlinear differential equation with a small parametrer[J]. SIAN J. Appl. Math. ,1969,17:569-581.
  • 8Dorr F W,Parter S V and Shampine L F. Applications of the maximum principle to singular perturbation problems[J]. SIAM Rev. , 1973,15: 43- 88.
  • 9Nagumo M. Uber die Differentialgleichung y'' = f(x,y,y') [J]. Proc. Pheys. Math. Soc. Japan,1973,19:861-866.
  • 10Laforgue J G, O'Malley R E. Shock layer movement for Burgers equation[J]. SIAM J. Appl. Math,1995,55:332-348.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部