期刊文献+

基于回归相关模型的自动图像标注

Regression Based Relevance Model for Automatic Image Annotation
下载PDF
导出
摘要 如何挖掘基于语义的相关模型是当前自动图像标注技术中一项重要而迫切的研究课题。本文从相关概率模型的角度分析了回归技术解决自动图像标注任务的可行性,进而提出了基于回归相关模型(Regression RelevanceModel,RRM)的自动图像标注框架。RRM通过有效地建立了图像-关键词的相关性,准确地描述了图像视觉特征与语义关键词之间的概率关系,从而实现图像的语义标注任务。最后在COREL数据集上的实验,表明基于RRM图像标注方法的有效性。 A popular technology is focused on how to build the semantic relevance model for the task of automatic image annotation. According to the probabilistic relevance model, it is feasible and effective for regression analysis to deal with the problem of image annotation. Thus, regression based relevance model (RRM) is proposed to implement the image annotation in this paper. The relation of image - keyword is effectively constructed via RRM, which correctly characterizes the probabilistic correlation between the visual feature of images and the semantic keyword. The experimental results on COREL reveal that high annotation accuracy can be achieved by the proposed framework.
作者 丁文锐
出处 《南昌大学学报(理科版)》 CAS 北大核心 2009年第4期388-391,共4页 Journal of Nanchang University(Natural Science)
关键词 自动图像标注 相关模型 回归分析 automatic image annotation relevance model regression analysis
  • 相关文献

参考文献11

  • 1Mori Y, Takahashi H, Oka R. Image - to - word Transformation Based on Dividing and Vector Quantizing Images with Words[ C ]. In:Proc. offntl. Workshop on Multimedia Intelligent Storage and Retrieval Management (MISRM' 99), Orlando, Oct, 1999.
  • 2Duygulu P, Bamard K, Freitas N, Forsyth D. Object Recognition as Machine Translation:learning a Lexicon for a Fixed Image Vocabulary[ C]. In:Proc. of European Conf. on Computer Vision ( ECCV' 02), Copenhagen, Denmark, May,2002:97 - 112.
  • 3Jeon J, Lavrenko V, Manmatha R. Automatic Image Annotation and Retrieval Using Cross - media Relevance Models [C]. In: Proc. of Int. ACM SIGIR Conf. on Research and Development in Information Retrieval (ACM SIGIR' 03 ), Toronto, Canada, Jul,2003 : 119 - 126.
  • 4Lavrenko V, Manmatha R, Jeon J. A Model for Learning the Semantics of Pictures [ C ]. In: Proc. Of Advances in Neural Information Processing Systems ( NIPS' 03 ), 2003.
  • 5Feng S, Manmatha R, Lavrenko V. Multiple Bernoulli Relevance Models for Image and Video Annotation [ C ]. In: Proc. of IEEE Int. Conf. on Computer Vision and Pattern Recognition ( CVPR' 04 ), Washington DC, USA, Jun, 2004:1 002 -1 009.
  • 6Tang J, Lewis P H. A Study of Quality Issues for Image Auto - annotation with the Corel Dataset [ J ]. IEEE Trans.on Circuits and Systems for Video Technology, 2007,17 (3) :384 -389.
  • 7Cusano C, Ciocca G, Schettini R. Image Annotation Using SVM [ C ]. In: Proc. of Int. SPIE Conf. on Imaging Ⅳ, San Jose, CA, USA, Feb,2004:330 - 338.
  • 8Gustavo C, Nuno V, A Database Centric View of Semantic Image Annotation and Retrieval [ C ]. In: Proc. of Int. ACM SIGIR Conf. on Retrieval ( ACM SIGIR' 05 ) , Salvador, Brazil,Aug,2005:559 - 566.
  • 9Cameiro G, Chan A B, Moreno P J, Vasconcelos N. Super-vised Learning of Semantic Classes for Image Annotation and Retrieval [ J ]. IEEE Trans. on Pattern Analysis and Machine Intelligence,2007,29 ( 3 ) : 394 - 410.
  • 10Wu J,Trivedi M M. A Regression Model in Tensor PCA Subspace for Face Image Super- resolution Reconstruc- tion[ C ]. In:Proc. of IEEE Int. Conf. on Pattern Recognition ( ICPR' 06), Hong Kong, Aug,2006:627 - 630.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部