期刊文献+

2+1维Levi孤子方程的达布变换及精确解

Darboux Transformation and Exact Solutions of the (2+1)-dimensional Levi Soliton Equations
下载PDF
导出
摘要 达布变换是获得孤子方程精确解十分有效的方法。本文利用谱问题的规范变换,为2+1维Levi孤子方程建立了达布变换,从而利用达布变换得到其精确解,且Levi孤子方程精确解的前两个例子被给出。 Darboux transformation is a very useful method for obtaining exact solutions of soliton equations. In the paper, by making use of gauge transformation of the spectral problem, we construct the Darboux transformation for the (2+1)- dimensional Levi soliton equations, and the Darboux transformation method is used to find the exact solutions. We list the first two solutions of the Levi soliton equations
作者 闵迪 冯滨鲁
出处 《潍坊学院学报》 2009年第4期57-61,共5页 Journal of Weifang University
关键词 达布变换 精确解 Levi孤子方程 darboux transformation exact solutions levi soliton equations
  • 相关文献

参考文献4

二级参考文献14

  • 1刘萍,张荣.广义偶合KdV孤子方程的达布变换及其精确解[J].洛阳师范学院学报,2005,24(5):1-5. 被引量:4
  • 2刘萍.Broer-Kaup系统的达布变换及其孤子解[J].数学物理学报(A辑),2006,26(B12):999-1007. 被引量:11
  • 3[1]Gu C H, Zhou Z X. On Darboux transformations for soliton equations in high dimensional space-time. Lett Math Phys, 1994,32(1):1~10.
  • 4[2]Cao C W, Geng X G, Wu Y T. From the special 2+1 Toda lattice to the Kadomtsev-Petviashvil equation. J Math Phys, 1999,40:3943.
  • 5[3]Zhou Z X. Nonlinear constraints and soliton equations of 2+1 dimensional three-wave equation. J Math Phys, 1998,39:986.
  • 6[4]Li Y S, Ma W X, Zhang J E. Darboux transformations of classical Boussinesq system and its new solutions. Phys Lett A, 2000,275:60~66.
  • 7[5]Levi D, Sym A, Rauch-Wojciechowski S. N-soliton on a vortex filament. Phys Lett A, 1983,94:408~411.
  • 8[6]Wu Y T, Zhang J S. Quasi-periodic solution of a new 2+1 dimensional coupled soliton equation. J Phys A: Math Gen, 2001,34:193~210.
  • 9LI Xue-mei, GENG Xian-guo. Lax matrix and a generalized coupled KdV hierarchy[J]. Phys A,2003,327:357-370.
  • 10Li Y S, Ma W X, Zhang J E. Darboux transformation of classical Boussinesq system and its new solutions[J]. Phys Lett A, 2000,275:60-56.

共引文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部