期刊文献+

求解拟变分不等式问题的一类无导数下降算法

A Derivative-free Descent Method for Solving Quasi-variational Inequality Problem
下载PDF
导出
摘要 利用广义正则gap函数的方向导数,构造了一种迭代方向,提出了一类求解拟变分不等式问题的算法。此算法不需关心目标函数的梯度计算问题,与相关文献比较,该算法的适用范围更加广泛。在某些假设条件下,证明算法的收敛性。 Constructing a descent direction obtained from the directional differentiability of the (generalized) regularized gap function, we present a derivative--free descent method for solving the quasi--variational inequality problem in this paper. We do not need consider the gradient problem of the objection function. Compared with the ones in the related references, the method of this paper has the superiority that the application is more wider. Under some reasonable conditions, the convergence of the algorithm is proved.
作者 桓莉莉 屈彪
机构地区 曲阜师范大学
出处 《潍坊学院学报》 2009年第4期62-64,61,共4页 Journal of Weifang University
基金 国家自然科学基金(10701047) 曲阜师范大学校基金项目(xj0625)
关键词 拟变分不等式问题 正则gap函数 最优化问题 价值函数 下降算法 quasi-variational inequality problem regularized gap function optimization problem merit function descent method
  • 相关文献

参考文献3

  • 1B. Qu,C. Y. Wang,J. Z. Zhang. Convergence and Error Bound of a Method for Solving Variational Inequality Problems via the Generalized D-Gap Function[J] 2003,Journal of Optimization Theory and Applications(3):535~552
  • 2Ji-Ming Peng,Masao Fukushima. A hybrid Newton method for solving the variational inequality problem via the D-gap function[J] 1999,Mathematical Programming(2):367~386
  • 3Masao Fukushima. Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems[J] 1992,Mathematical Programming(1-3):99~110

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部