期刊文献+

基于奇异值分解自适应图像压缩的优化算法 被引量:3

Optimization algorithm of adaptive image compression based on singular value decomposition
下载PDF
导出
摘要 结合图像质量评价体系,在基于奇异值分解的动态压缩比优化方法的基础之上提出一种新的优化算法.该优化算法可以解决基于奇异值分解的动态压缩比优化方法中不能根据不同图像的特点对每幅图像自适应地进行图像压缩的缺陷,并能根据需求,预先设定压缩图像的质量范围,使压缩图像达到指定的压缩率或清晰度,从而满足指定的要求.经实验证明,该优化算法切实可行,具有较高的实用价值. Combined with image quality evaluation system, a new optimization algorithm was proposed based on the optimization method of singular value decomposition-based dynamic compression ratio. By using this optimization algorithm the defect that the image compression of every frame of image could not adaptively conducted according to the feature of different images with above mentioned algorithm was solved. Also, by using it the quality scope of image compression could be preset according to the demands to make the image compression reach a stipulative compressive ratio and clarity, so that the stipulative demands were met. It was proved by experiment that the optimization algorithm was feasible and had a high applicational value.
出处 《兰州理工大学学报》 CAS 北大核心 2009年第5期95-98,共4页 Journal of Lanzhou University of Technology
关键词 奇异值 奇异值分解 压缩比 图像压缩 向量夹角 singular value singular value decomposition(SVD) compression ratio image compression vector angle
  • 相关文献

参考文献6

  • 1BOULGOURIS N V, TZOVARAS D, STRINNTZIS M G. Lossless image compression based on optimal prediction, adaptive lifting, and conditional arithmetic coding [J ]. IEEE Transactions on Image Processing, 2001,10 (1) : 1-14.
  • 2AMIR,WILLIAM A P. An image multire solution representation for lossless and lossy compression [J]. IEEE Trans Image Processing, 1996,5(9):1303-1310.
  • 3何晔,王正勇,吴晓红,罗代升.基于奇异值分解动态寻找最佳压缩比的方法[J].激光杂志,2008,29(5):42-43. 被引量:1
  • 4胡乡峰,卫金茂.基于奇异值分解(SVD)的图像压缩[J].东北师大学报(自然科学版),2006,38(3):36-39. 被引量:17
  • 5Aleksandr Shnayderman, Alexander Gusev, Ahmet M. Eskicioglu. An SVD-based grayscale image quality measure for local and global assessment [J] . IEEE Transactions on Image Processing, 2006,15 (2) : 45-52.
  • 6骞森,朱剑英.基于奇异值分解的图像质量评价[J].东南大学学报(自然科学版),2006,36(4):643-646. 被引量:20

二级参考文献27

  • 1胡乡峰,卫金茂.基于奇异值分解(SVD)的图像压缩[J].东北师大学报(自然科学版),2006,38(3):36-39. 被引量:17
  • 2斯图尔特GW.矩阵计算引论[M].上海:上海科学技术出版社,1980..
  • 3Boulgouris N V, Tzovaras D, strilmtzis MG. Lossless image compression based on optimal prediction, adaptive lifting, and conditional arithmetic coding[J]. IEEE Transactions on hnage Processing, 2001,10(1 ) : 1 - 14.
  • 4AMIR, WILLIAM A P. An image multire solution representation for lossless and lossy compressionl [ J ]. IEEE Trans Image Processing, 1996, 5(9) : 1303 - 1310.
  • 5夏德深等编著.现代图象处理技术勺应用[M].南京:东南大学出版社,2001.
  • 6Meksandr Shnaydennan, Alexander Gusev, and Ahmet M. Eskicioglu. An SVD - Based Grayscale Image Quality Measure for Local and Global Assessment [ J ]. IEEE Transactions on image processing, 2006, 15 (2)138.
  • 7Wang Z,Bovik A C.A universal image quality index[J].IEEE Signal Processing Letters,2002,9(3):81-84.
  • 8van Dijk A M.Subjective quality assessment of compressed images[J].Signal Processing,1997,58(3):235-252.
  • 9Dung P,Mohammed S B.A measure for image quality[C]//Proceedings of the 1998 ACM Symposium on Applied Computing.Atlanta,1998:513-519.
  • 10Wilson D L,Baddeley A J,Owens R A.A new metric for gray-scale image comparison[J].International Journal of Computer Vision,1997,24(1):5-17.

共引文献35

同被引文献22

  • 1禹晶,苏开娜,肖创柏.一种改善超分辨率图像重建中边缘质量的方法[J].自动化学报,2007,33(6):577-582. 被引量:22
  • 2Boul Gouris N V, Tzovaras D, Strinntzis M G. Lossless Image Compression Based on Optimal Prediction, Adaptive Lifting ,and Conditional Arithmetic Coding [J] . IEEE Transactions on Image Processing ,2001,10 (1) : 1-14.
  • 3程正兴.小波分析算法与应用[M].西安:西安交通大学出版社,2001.
  • 4陶长武,蔡自兴.现代图像压缩编码技术[J].信息技术,2007,31(12):53-56. 被引量:4
  • 5IRANI M, PELEG S. Improving resolution by image registra- tion [J]. CVGIP: Graphical Models and Image Processing, 1991,53(3) : 231-239.
  • 6PATTI A J,SEZAN M I,TEKALP A NL Superresolution vide reconstruction with arbitrary sampling lattices and nonzero ap- erture time [J]. IEEE Transactions on Image Processing, 1997,6(8) : 1064-1076.
  • 7PATANAVIJIT V,JITAPUNKUL S. An iterative super-reso- lution reconstruction of image sequences using fast affine block-based registration with BTV regularization [C]//Pro- ceedings of IEEE Asia Pacific Conferenca on Circuits and Sys- tems. Singapore: IEEE, 2006 : 1717-1720.
  • 8FREEMAN W T, P,a.S'I'OR E C, CARMICHAEL O T. Learning low-l.evel vision [J]., International Journal of Comput- er VisionSpecial Issue on Statistical and Computational Theo- ries of VisionModeling, Learning, Sampling and Computing: Part I ,2000,40(1) :25-47.
  • 9FREEMAN W T, PASZTOR E C, CARMICHAEL O T. Ex- ample-based super-resolution [J]. IEEE Computer Graphics and Application,2002,22(2) :56-65.
  • 10YANG j C,WRIGHT J, HUANG T S, et al. Image super reso- lution as sparse representation of raw image patches [C]// Proceedings of IEEE Conference on Computer Vision and Pat- tern Recognitiom Ires Alamitos: IEEE Computer Society Press, 2008:1-8.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部