期刊文献+

弱直积图的2-距离色数

2-distance chromatic number of weak direct product graphs
下载PDF
导出
摘要 图G(V,E)的2-距离染色是指正常的顶点染色,且任意距离不大于2的两个顶点着不同的颜色.得到弱直积图的一个2-距离色数的可达界,即Δ(G).Δ(H)+1≤χ2(G×H)≤χ2(G).2χ(H),且给出一些特殊弱直积图的2-距离色数,说明此界可达.如χ2(P2×Pn)=Δ(P2).Δ(Pn)+1=3(n≥3),χ2(Pm×Pn)=Δ(Pm).Δ(Pn)+1=5(m≥3,n≥3)说明下界可达,χ2(Km×Kn)=χ2(Km).2χ(Kn)=mn,说明上界可达. The 2-distance coloring of graph G(V,E) means a proper vertex coloring such that no two vertices at distance less than or equal to 2 in G were assigned the same color.The approachable boundary of 2-distance chromatic number of weak direct product graphs was obtained,where Δ(G)·Δ(H)+1≤χ2(G×H)≤χ2(G)·χ2(H), and some 2-distance chromatic numbers of particular weak direct product graphs were given,also,showing that this boundary could be reached.For example,χ2(P2×Pn)=Δ(P2).Δ(Pn)+1=3(n≥3),χ2(Pm×Pn)=Δ(Pm).Δ(Pn)+1=5(m≥3,n≥3)implies that the lower boundary was approachable and χ2(Km×Kn)=χ2(Km).2χ(Kn)=mn implies that the upper boundary was approachable.
出处 《兰州理工大学学报》 CAS 北大核心 2009年第5期143-145,共3页 Journal of Lanzhou University of Technology
基金 甘肃省高校研究生导师基金(0501-03)
关键词 2-距离染色 2-距离色数 弱直积图 2-distance coloring 2-distance chromatic number weak direct product graphs
  • 相关文献

参考文献8

  • 1JENSEN T R, TOFT B. Graph coloring problems [M]. New York:Wiley, 1995.
  • 2ALON N, MOHAR B. The chromatic number of graph powers [J]. Combinatorics, Probability and Computeing, 2002, 11 : 1- 10.
  • 3MOLLOY M, SALAVATIPOUR M R. A bound on the chromatic number of the square of a planar graph [J]. Journal of Combinatorial Theory: Series B, 2005,94: 189-213.
  • 4LIH Kowei, WANG Weifan. Coloring the square of an outerplanar graph [J]. Taiwan Residents Journal of Mathematics, 2006,10 (4) : 1015-1023.
  • 5HOKMAN A J,SINGLETON R R. On moore graphs with diameters 2 and 3 [J].IBM J Res Develop, 1960,4: 497-504.
  • 6陈海钰,刘信生,陈祥恩.笛卡尔积图的2-距离色数[J].西北师范大学学报(自然科学版),2007,43(2):12-15. 被引量:3
  • 7BONDY J A,MURTY U S R. Graph theory with applications[M]. New York: Macmillan Longdon and Elsevier, 1976.
  • 8张忠辅,刘林忠,王建方,袁晋江.图的强染色[J].西北师范大学学报(自然科学版),2002,38(1):28-29. 被引量:14

二级参考文献13

  • 1[1]Gary Chartrand,Linda Lesniak Foster.Graphs and Digraphs[M].Monterey:Wadsworth Books/Cole,1986.1-150.
  • 2[2]Roy Nelson,Robin J Wilson.Graph Colorings[M].London:Pitman Research Notes in Mathematic Series,1990.218.
  • 3[3]Harary F.Conditional colorability in graphs[A].Graphs and Applications.Proc.First Colorado Symp.Graph Theory[C].New York:John Wiley & Sons Inc,1985.1-200.
  • 4ALON N,MOHAR B.The chromatic number of graph powers[J].Combinatorics,Probability and Computing,2002,11:1-10.
  • 5MOLLOY M,SALAVATIPOUR M R.A bound on the chromatic number of the square of a planar graph[J].Journal of Combinatorial Theory(Series B),2005,94:189-213.
  • 6LIH Ko-wei,WANG Wei-fan.Coloring the square of an outerplanar graph[J].Taiwan Residents Journal of Mathematics,2006,10(4):1015-1023.
  • 7FERTIN G,GODARD E,RASPAVD A.Acyclic and k-distance coloring of the grid[J].Information Processing Letters,2003,87:51-58.
  • 8FERTIN G,RASPAUD A,REED B.Star coloring of gaph[J].Journal of Graph Theory,2004,47:163-182.
  • 9KIM D S,DU Ding-zhu,PARDALOS P M.A coloring problem on the n-cube[J].Discrete Applied Mathematics,2000,103:307-300.
  • 10JACKO P,JENDROL S.Distance coloring of the hexagonal lattice[J].Discussiones Mathematicae Graph Theory,2005,25:1-16.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部