期刊文献+

低信噪比下数字调制信号的自动识别

Automatic Recognition for Digital Modulation Signals at Low SNR Situations
下载PDF
导出
摘要 提出了一种基于谱特征和高阶累积量的数字通信信号自动调制识别新方法。该方案从接收信号中提取一组稳健性强的特征参数,具有计算简单,无需先验信息,同时具有较好的噪声抑制等特点,能在低信噪比情况下快速有效的进行调制信号的自动识别。仿真结果表明,在信噪比SNR大于3dB时总体识别率在96%以上。该方案具有实用性和可行性。 This paper presents a new method for modulation and recognition of digital communication signals based on spectrum feature and higher order rameters that extracted from the received signals cumulants (HOS) analysis. A set of robust feature paare used as classification feature. The method has multiple characteristics such as the computational simplicity, no demand for prior information and good performance of suppressing the noise. Therefore it can automatically recognize the signal modulations quickly and efficiently at the lower Signal-to-Noise (SNR) situations. Simulation results indicate that the performance of the proposed method can achieve more than 96% recognition accuracy when SNR is above 3 dB. This method is feasible and practical.
出处 《中国电子科学研究院学报》 2009年第5期519-522,共4页 Journal of China Academy of Electronics and Information Technology
关键词 调制识别 高阶累积量 谱特征 modulation recognition higher order cumulants spectrum feature
  • 相关文献

参考文献9

  • 1WEAVER C S, COLE C A, KRUMLAND R b, et al. The Automatic Classification of Modulation Types by Pattern Recognition [ R ]. Standford Electronics Laboratories, Technical Report. No. 1829-2,1969.
  • 2AZZOUZ E E, NANDI A K. Automatic Identification of Digital Modulation Types. Signal Processing[ J ]. 1995,47 ( 1 ) :55-69.
  • 3NANDI A K, AZZOUZ E E, Algorithms for Automatic Modulation Recognition of Communication Signals [ J ]. 1998,46(4) :431-436.
  • 4GARDNER A W, SPOONER C M. Cyclic Spectral Analysis for Signal Detection and Modulation Recognition [ J ]. Military Communication Conference, 1988 (2) :419-424.
  • 5范海波,杨志俊,曹志刚.卫星通信常用调制方式的自动识别[J].通信学报,2004,25(1):140-149. 被引量:87
  • 6吴月娴,葛临东,许志勇.常用数字调制信号识别的一种新方法[J].电子学报,2007,35(4):782-785. 被引量:26
  • 7罗鹏飞,张文明,刘忠,等.统计信号处理基础-估计与检测理论[M].北京:电子工业出版社,2006.7.
  • 8SWAMI A, SADLER B M. Hierarchical Digital Modulation Classification Using Cumulants [ J ]. IEEE Trans. , 2000, 48(3 ) :416-428.
  • 9韩钢,张文红,李建东,陈彦辉.基于高阶累积量和支撑矢量机的调制识别研究[J].系统工程与电子技术,2003,25(8):1007-1011. 被引量:19

二级参考文献18

  • 1[1]NANDI A K, AZZOUZ E E. Automatic analogue modulation recognition[J]. Signal Processing 1995,46(2):211-222.
  • 2[2]NANDI A K, AZZOUZ E E. Algorithms for automatic modulation recognition of communication siganls[J]. IEEE Trans Commun, 1998, 46(4): 431-436.
  • 3[3]SWAMI A, SADLER B M. Hierarchical digital modulation classification using cumulates[J]. IEEE Trans Commun, 2000, 48(3): 416-429.
  • 4[4]GARDNER W A, SPOONER C M. Cyclic-spectral analysis for signal detection and modulation recognition[A]. MILCOM'88[C]. 1988. 419-424.
  • 5[5]DUBUC C, BOUDREAU D. An automatic modulation recognition algorithm for spectrum monitoring applications[A]. IEEE International Conference on Communications (ICC'99)[C]. Vancouver, Canaada, 1999.732-736.
  • 6[6]CHLAN Y T, GADBOIS L G Identification of the modulation type of a signal[J]. Signal Processing, 1989,16(2):149-154.
  • 7Nandi A K,Azzouz E E.Algorithms for automatic modulation recognition of communication signals[J].IEEE Trans Comm,1998,46(4):431-436.
  • 8Wong M L D,Nandi A K.Automatic digital modulation recognition using spectral and statistical features with multi-layer perceptrons[A].In Proc of Sixth International Symposium on Signal Processing and its Applications (ISSPA' 01)[C].Kuala Lumpur,Malaysia,13-16 vol.2:August,2001.390-393.
  • 9Zhao Y Q,Ren G H,Wang X X,et al.Automatic digital modulation recognition using artificial neural networks[A].In Proc of IEEE Int Conf Neural Networks & Signal Processing[C].Nanjing,China,Dec.14-17,2003.257-260.
  • 10Dubuc C,Boudreau D.An automatic modulation recognition algorithm for spectrum monitoring applications[A].In Proc of IEEE International Conference on Communications (ICC' 99)[C].Vancouver,Canada,1999.732-736.

共引文献127

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部