摘要
对满足周期边界条件的Camassa-Holm(CH)方程,基于其多辛方程组的形式,空间方向用Fourier拟谱方法,时间方向用中点隐式辛格式进行离散,得到了CH方程的多辛Fourier拟谱格式及其离散的多辛守恒律.数值实验验证了所构造格式的有效性与长期数值稳定性.
The Camassa-Holm equation(CHE) with periodic boundary condition is considered in this paper. Based on its multi-symplectic formulation, a multi-symplectic Fourier pseudo-spectral scheme for the CHE is constructed by using Fourier pseudo-spectral method in space direction and midpoint implicit symplectic scheme in time direction. Its discrete multi-symplectic conservation law is also obtained. Numerical experiments show that the scheme constructed in this paper is effective and has excellent long time numerical behavior.
出处
《湘潭大学自然科学学报》
CAS
CSCD
北大核心
2009年第3期13-17,共5页
Natural Science Journal of Xiangtan University
基金
国家自然科学基金资助项目(10571178)