期刊文献+

中文高频词串的抽取及其在语言模型中的应用 被引量:2

Chinese Frequent String Extraction and Application on Language Model
下载PDF
导出
摘要 为准确抽取语料库中的高频词串,使其能更好地应用于语言模型中,提出了一种基于字串切分度的中文高频词串(CFS)抽取算法,并用该算法抽取出的CFS分别建立一元和二元语言模型.实验表明,基于CFS的语言模型能有效克服现有基于字和词的n元语法模型长距离相依性能较差的缺陷;同时,在模型困惑度、音字转换正确率上均优于已有基于净频次的CFS语言模型. In order to extract the Chinese frequent strings(CFS) accurately and make better use in language models,a new method for CFS extraction using string segmentation degree is proposed.Unigram and bigram language models based on this CFS extraction method are built.Experiment shows that the CFS based language model can deal with the lack of long distance dependency problem in character and word based language model.It also shows that the CFS based language model has lower model perplexity and higher pinyin-to- character conversion correctness compared with the model based on previous CFS extraction method.
作者 文娟 王小捷
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2009年第5期10-14,共5页 Journal of Beijing University of Posts and Telecommunications
基金 国家科技支撑计划项目(2007BAH05B02-04) 高等学校学科创新引智计划项目(B08004) BUPT-Nokia合作项目
关键词 中文高频词串 字区分度 字串切分度 N元模型 音字转换 Chinese frequent string character distinction degree string segmentation degree n-gram language model pinyin-to-character conversion
  • 相关文献

参考文献8

  • 1Jelinek F. Self-organized language modeling for speech recognition [ M ]// Waibel A, Lee K F. Readings in speech recognition. San Mateo: Morgan Kaufmann Publishers Inc, 1990. 450-506.
  • 2Gao Jianfeng, Lin Chenyue. Introduction to the special issue on statistical language modeling[J]. ACM Transactions on Asian Language Information Processing, 2004, 3 (2). 87-93.
  • 3Medlock B. An adaptive, semi structured language model approach to spare filtering on a new corpus[C]//CEAS. California: Mountain View, 2006: 93-105.
  • 4Thorsten B, Ashok C, Franz J, et al. Large language models in machine translation [ C]//Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. Prague: [ s. n. ], 2007. 858-867.
  • 5Winnie C, Chris G, Martin W. From n-gram to skipgram to concgram [ J ]. International Journal of Corpus Linguistics, 2006, 11(4): 411-433.
  • 6Eugene C. Immediate head parsing for language models [C] // ACL/EACL. Toulouse; Morgan Kaufmann Publishers, 2001: 124-131.
  • 7Lin Y J, Yu M S. Extracting Chinese frequent strings without a dictionary from a Chinese corpus and its applications[J]. Journal of Information Science and Engineering, 2001, 17(5): 805-824.
  • 8秦颖,王小捷,张素香.汉语分词中组合歧义字段的研究[J].中文信息学报,2007,21(1):3-8. 被引量:11

二级参考文献14

  • 1孙茂松,邹嘉彦.汉语自动分词研究评述[J].当代语言学,2001,3(1):22-32. 被引量:101
  • 2王彩荣,王凯丽,黄玉基.歧义字段的归类及切分算法[J].微处理机,2005,26(3):33-35. 被引量:2
  • 3梁南元.书面汉语自动分词系统—CDWS[J].中文信息学报,1987,(2):44-52.
  • 4侯敏,等.汉语自动分词中的上下文相关歧义字段(CSAS)研究[A].自然语言理解与大规模内容计算[C].北京:清华大学出版社,2005.7,214-220.
  • 5Xiao Luo,Maosong Sun,Benjamin K.Tou.Covering Ambiguity Resolution in Chinese Word Segmentation Based on Contextual Information[A].In:Proceedings of COLING 2002[C],598-604.
  • 6Gao,Jianfeng,Joshua Goodman,Mingjing Li and Kai-Fu Lee.Toward a unified approach to statistical language modeling for Chinese[J].ACM Transactions on Asian Language Information Processing,2002.1(1):3-33.
  • 7Nianwen Xue.Chinese Word Segmentation as Character Tagging[J].Computational Linguistics and Chinese Language Proccessing,February 2003,Vol.8,No.1,29-48.
  • 8Berger A L,P iet ra S A D,P iet ra V J D.A Maximum Entropy Approach to Natural Language Processing[J].Computational Linguistic,1996,22 (1):39-71.
  • 9Adwait Ratnaparkhi.Maximum Entropy Models for Natural Language Ambiguity Resolution[D].PhD thesis,University of Pennsylvania,Philadelphia,PA,1998.
  • 10H T Dang,et al.Simple Features for Chinese Word Sense Disambiguation[A].In:Proceedings of COLING'02,2002[C],Taipei.

共引文献10

同被引文献13

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部