期刊文献+

汽车空调鼓风机进风口参数数值研究 被引量:5

Numerical Investigation of the Parameters of Blower Intake Opening of Automotive Air-Conditioning
下载PDF
导出
摘要 基于计算流体力学(CFD)方法,采用RNGk-ε模型,建立了某轿车空调鼓风机进风口的数值模型,并对影响鼓风机进风口气流组织及风阻特性的参数(进风罩形状、进风口开口面积及外部障碍物与进风口距离)进行了数值研究.结果表明:数值分析结果与试验结果吻合较好,风阻的最大偏差小于5%;进风风罩形状对进风气流组织及风阻特性基本无影响;当鼓风机罩壳进风面积约等于1.5倍的出风面积时,鼓风机的运行效率最为经济;外部障碍物的存在对鼓风机进风风阻影响较大;综合考虑以上影响因素,得到鼓风机进风口开口面积的经验公式. Based on the method of computational fluid dynamics (CFD), the three-dimensional CFD model of an automotive air-conditioning blower intake was established by using RNG k-ε model. The effect of the design parameters, such as the opening area and the shape of blower intake and the distance between barrier and intake opening, which will had significant effects to air organization and air flow resistance, were numerically investigated. The results indicate that the CFD results fit experimental data satisfactorily from the literature with the max difference of 5%, and different shapes of blower intake have the almost same effects to air organization and airflow resistance, and the blower operates in the most economical co- efficient of performance when opening area of blower intake is one and half large as that of blower intake outlet. In order to reduce the airflow resistance, the distance between barrier and intake opening should have the minimum limit. In addition, by comprehensive consideration of these factors above, the empirical formulation of opening area of blower intake is given.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2009年第10期1654-1657,共4页 Journal of Shanghai Jiaotong University
关键词 汽车空调 鼓风机进风罩壳 计算流体力学 进风风阻 进风口面积 automotive air-conditioning blower intake opening computational fluid dynamics (CFD) airflow resistance fresh/rec opening area
  • 相关文献

参考文献9

  • 1祁照岗.基于部件优化的汽车空调系统性能提升研究[D].上海:上海交通大学机械与动力工程学院,2008.
  • 2胡俊伟,丁国良.开缝翅片压降和换热特性的数值模拟[J].上海交通大学学报,2004,38(10):1639-1642. 被引量:25
  • 3Sahin H M, Dal A R, Baysal E. 3-D numerical study on the correlation between variable inclined fin angles and thermal behavior in plate fin-tube heat exchanger [J]. Appl Thermal Eng, 2007, 27(11-12):1806-1816.
  • 4Yasar I, Cem P. The effect of channel height on the enhanced heat transfer characteristics in a corrugated heat exchanger channel[J]. Appl Thermal Eng, 2003, 23(8) :979-987.
  • 5JIAO An-jun, ZHANG Rui, Sangkwon J. Experimental investigation of header configuration on flow maldistribution in plate-fin heat exchanger[J]. Appl Thermal Eng, 2003, 23(10): 1235-1246.
  • 6TIAN Chang-qing, LI Xian-ting. Transient behavior evaluation of an automotive air conditioning system with a variable displacement compressor [J]. Appl Thermal Eng, 2005, 25 (13) : 1922-1948.
  • 7Lee G H, Yoo J Y. Performance analysis and simulation of automobile air conditioning system[J]. Int J of Refrig, 2000, 23(3): 243-254.
  • 8Zeng X, Major G, Hirao T, et al. Automotive A/C system integrated with electrically-controlled variable capacity scroll compressor and fuzzy logic refrigerant flow management [ C]//SAE Paper, USA: SAE, 2001 : 2001-01-0587.
  • 9Fluent Inc. FLUENT 6.3 Documentation[R]. USA: Fluent Inc, 2006.

二级参考文献7

  • 1Wang C C, Lee C J, Chang C T, et al. Some aspects of plate fin-and-tube heat exchanger: with and without louvers[J]. Journal of Enhanced Heat Transfer,1997,14(1):174-186.
  • 2Hiroaki K, Shinicki I, Osamu A, et al. High-efficiency heat exchanger [J]. National Technical Report,1989,35(6):653-661.
  • 3Kang H C, Kim M H. Effect of strip location on the air-side pressure drop and heat transfer in strip finand tube heat exchanger[J]. International Journal of Refrigeration, 1999,22 (1): 303- 310.
  • 4Shah R K. Progress in the numerical analysis of compact heat exchanger surfaces [J]. Advances in Heat Transfer, 2001,40(1): 579- 599.
  • 5Chichuan W, Kuanyu C, Yujuei C. An experimental study of heat transfer and friction characteristics of typical louver fin-and-tube heat exchangers[J]. International Journal of Heat Mass Transfer, 1998,41 : 817-822.
  • 6Guo Z Y, Li D Y, Wang B X. A novel concept for concept for convective heat transfer enhancement [J].International Journal of Heat Mass Transfer, 1998,41:2221-2225.
  • 7Wenquan T, Zengyuan G, Buxuan W. Field synergy principle for enhancing convective heat transfer-its extension and numerical verifications [J]. International Journal of Heat and Mass Transfer, 2002,45: 3849-3856.

共引文献24

同被引文献48

引证文献5

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部