期刊文献+

一类特殊风险模型的破产概率 被引量:1

Ruin Probability of a Special Risk Model
下载PDF
导出
摘要 研究了保费收入为ct^β,且索赔由分数布朗运动(自相似参数H〉1/2)所模拟的一类特殊的风险模型的破产概率.通过测度变换,得到了无限时间的破产概率.最后利用分数布朗运动是高斯过程这一性质,给出了有限时间破产概率的上下界及极限定理. It's studied that the ruin probability of special risk model, whose claim processes is modeled by a fractional Brownian motion (with self-similar parameter H〉1/2), and the corresponding premium is ct^β. By measure transformation, an infinite time ruin probability is obtained. Finally, by the property which the fractional Brownian motion is a Gaussian process, the upper and lower bounds of ruin probability as well as limit theorem are given.
出处 《南开大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第5期32-37,共6页 Acta Scientiarum Naturalium Universitatis Nankaiensis
基金 国家青年自然科学基金(10901086) 国家重点基础研究发展计划(973计划)(2007CB814905)
关键词 分数布朗运动 自相似过程 破产概率 fractional Brownian motion self-similar processes ruin probability martingale
  • 相关文献

参考文献10

  • 1Kolmogorov A N. Wienerche Spiralen und einige andere interessante kurven in Hilbertschen Raum[J]. Comptes Rendus Acad Sci USSR (N S), 1949, 26:115-118.
  • 2Mandelbort B, Van Ness J. Fractional Brownian motions, fractional noises and applications[J]. SIAM Review, 1968, 10(4): 422-437.
  • 3Michna Z. Self similar processes in collective risk theory[J]. J Applied Math Stoch Anal, 1998, 11: 429-448.
  • 4Michna Z. On tail probabilities and its passage times for fractional Brownian motion[J]. Math Meth Oper Res, 1999, 49: 335-354.
  • 5Samorodnitsky G, Taqqu M S. Stable Non-Gaussian Random Processes, Stochastic Model with Infinite Variance [M]. New York: Chapman and Hall, 1994.
  • 6Duncan T E, Hu Y, Pasik-Duncan B. Stochastic calculus for fractional Brownian motion, I Theory[J]. SIAM Journal on Control and Optimization, 2000, 38: 582-612.
  • 7Hu Y, Фksendal B. Fractional white noise calculus and application to finance[JJ. Infinite Dimensional Analysis Quantum Probability and Related Topics, 2003, 6(1): 1-32.
  • 8Christian B. An Ito formula for generalized functionals of a fractional Brownian motion arbitrary Hurst parameter [J].Stoch Proc Appl, 2003, 104. 81-106.
  • 9Huang S T, Cambanis S. Stochastic and multiple Wiener integrals for Gaussian process[J]. Ann Prob, 1978, 6:585 -614.
  • 10Norros L, Valkeila E, Virtamo J. An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motions[J]. Bernoulli, 1999, 5(4) : 571- 587.

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部