期刊文献+

基于FPGA的细粒度并行K-means算法加速器的设计与实现 被引量:2

Fine-Grained Parallel K-means Clustering Algorithm on FPGA
下载PDF
导出
摘要 本文在深入分析K-means算法计算特征的基础上,基于FPGA平台提出并实现了一种细粒度的并行浮点K-means算法。设计采用了阵列多PE并行处理的任务划分策略,实现了处理单元间的负载平衡,采用数据驱动的流水线隐藏片外存储访问,设计了一种基于脉动阵列结构的主从多PE并行计算阵列,并在单片FPGA(XC5VLX330)上成功集成了4个PE。实验结果表明,我们提出的K-means算法加速器结构具备良好的可扩展性。通过实验测试,我们的实现方案相对于Pentium 4 2.66 GHz单处理器程序达到了15倍的加速比。 We propose a systolic array structure including one master PE and multiple slave PEs for fine grain hardware implementation on FPGA. We partition tasks by rows and assign tasks to PEs for load balance. We exploit data reuse schemes to reduce the need to load data from external memory. To our knowledge, our implementation with 4 PEs is the only FPGA aecelerator(XC5VLX330) implementing the complete K-means clustering algorithm. The experimental results show a factor of more than 15 speedup over the Cluster 3. 0 software running on a PC platform with Pentium 4 2. 66GHz CPU.
出处 《计算机工程与科学》 CSCD 北大核心 2009年第A01期64-67,共4页 Computer Engineering & Science
基金 国家自然科学基金资助项目(2007AA01Z106)
关键词 K-MEANS算法 FPGA 硬件加速器 浮点实现 K-means algorithm FPGA hardware accelerator float point
  • 相关文献

参考文献8

  • 1SchenaM. Microarray Biochip Technology[M]. Eaton Publishing, 2000.
  • 2Friedman N, Linial M, Nachman I, et al. Using Bayesian Networks to Analyze Expression Data[J]. Journal Computational Biology, 2000,7(3-4) : 601-620.
  • 3Lu Y, Lu S, Fotouhi F, et al. Incremental Genetic K-means Algorithm and Its Application in Gene Expression Data Analysis[C]//Proc of BMC Bioinformatics, 2004.
  • 4Ressom H, Wang D, Natarajan P. Adaptive Double Selforganizing Maps for Clustering Gene Expression Profiles [J]. Neural Networks, 2003,16(5/6) : 633-640.
  • 5Su M, Chang H. A New Model of Self-Organizing Neural Networks and Its Application in Data Projection[J]. IEEE Trans on Neural Network,2001,12(1):153-158.
  • 6Gokhale M, Frigo J, Lavenier D. Experience with a Hybrid Processor: K-Means Clustering[J]. The Journal of Supercomputing, 2003,26 (2) : 131-148.
  • 7Lavenier D. FPGA Implementation of the K-means Clustering Algorithm for Hypersprctral Images, 2000.
  • 8Belanovi'c P, Leeser M. A Library of Parameterized Floatingpoint Modules and Their Use[M]. Springer, 2002.

同被引文献6

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部