期刊文献+

嗜热金属球菌对镍钼矿的浸出 被引量:5

Leaching of nickel-molybdenum sulfide ores with Metallosphaera sedula
原文传递
导出
摘要 对嗜热金属球菌(Metallosphaera sedula)浸出镍钼硫化矿进行了研究,以探求高效可持续的生物冶金方法.结果表明:有菌组镍的浸出率均在91%以上,而无菌组为77.64%;以亚铁为能源培养的驯化菌组镍和钼的浸出率分别为96.56%和65.43%,非驯化菌组为94.37%和60.20%;起始pH为2时浸出组镍浸出率达97.55%,钼浸出率为62.97%;粒径小于0.048mm和小于0.077mm的浸样镍浸出率分别为97.58%和95.37%,钼浸出率分别为64.46%和59.54%;低矿浆质量浓度比高矿浆质量浓度的浸出率高,5g.L-1矿浆镍和钼的浸出率分别达98.67%和81.87%;在无菌条件下,浸样添加0.5g.L-1Fe3+和对照组镍浸出率分别为91.19%和77.64%,钼浸出率为52.25%和50.19%;透析浸出率比非透析浸出率低;金属球菌浸出组比氧化亚铁硫杆菌浸出组的浸出率高,前者镍和钼浸出率分别为94.01%和64.74%,后者仅为67.77%和38.16%. The bioleaching of nickel-molybdenum sulfide ores with the thermophilic and acidophilic lithotroph, Metallosphaera sedula, with shaking flasks was studied in order to probe a more efficient and sustainable biometallurgical way. The result shows that the leaching rate of Ni with MetaUosphaera sedula was all more than 91%, but that in the groups without Metallosphaera sedula was 77.64 %. The leaching rates of Ni and Mo in the groups with adapted Metallosphaera sedula cultured with Fe^2+ were 96.56 % and 65.43 %, those in the groups with unadapted Metallosphaera sedula 94.37 % and 60.20 %, respectively. The leaching rates of Ni and Mo in the groups when the initial pH was 2 were 97.55 % and 62.97 % respectively. The leaching rates of Ni in the groups with the sizes less than 0.048 mm and 0.077 mm were 97.58% and 95.37%, while the leaching rates of Mo were 64.46% and 59.54 %. The leaching rates of Ni and Mo in the groups with an ore mass concentration of 5 g· L^-1 were higher than the more ore content and reached 98.67% and 81.87% respectively. In the groups with 0.5 g· L^-1 Fe^3+ added and the contrast group without Metallosphaera sedula, the leaching rates of Ni were 91.19% and 77.64% respectively, while those of Mo were 52.25% and 50.19%. The leaching rates of Ni and Mo in the dialyzing group were lower than those of the undialyaing group. The leaching rates of Ni and Mo in the groups with MetaUosphaera sedula were 94.01% and 64,74% respectively, while just 67.77% of Ni and 38.16% of Mo were leached out in the groups with AcMthiobacillus ferrooxidans.
出处 《北京科技大学学报》 EI CAS CSCD 北大核心 2009年第10期1224-1230,共7页 Journal of University of Science and Technology Beijing
基金 国家高技术研究发展计划资助课题(No.2007AA06Z129)
关键词 金属球菌 氧化亚铁硫杆菌 驯化 浸出 Metallosphaera sedula Acidthiobacillus ferrooccidans domestication leaching
  • 相关文献

参考文献13

  • 1吉兆宁,余斌,刘坚,陈何,薛云新,马公望,赵新峰.金堆城低品位钼矿石可浸性研究[J].有色金属(矿山部分),2002,54(5):15-18. 被引量:11
  • 2Mishra D, Kim D J, Ralph D E. Bioleaching of vanadium rich spent refinery catalysts using sulfur oxidizing lithotrophs. Hydrometallurgy, 2007, 88 : 202.
  • 3Nasernejad B, Kaghazchi T. Bioleaching of molybdenum from low-grade copper ore process. Biochemistry, 1999, 35:437.
  • 4Zamani M A A, Hrroyoshi N, Tsunekawa M. Bioleaching of Sarcheshmeh molybdenite concentrate for extraction of rhenium. Hydrometallurgy, 2005, 80 - 23.
  • 5Donati E, Gurutehet G, Porro S, et al. Bioleaching of metallic sulfides with T. ferrooxidans in the absence of iron(II). World J Microbiol Biotechnol, 1992 (98) : 305.
  • 6Silverman M P, Lundgren D G. Studies on the chemoautotrophic iron bacterium T. ferrooxidans I-An improved medium and harvesting procedure for securing high cell yield. J Bacterial, 1959, 77 : 642.
  • 7丁建南.几种高温浸矿菌的分离鉴定及其浸矿作用机理与潜力研究[学位论文].长沙:中南大学,2007:3.
  • 8Eseoba B J, Jedlicki E, Vargas T. A method for evaluating the proportion of free and attached bacteria in the bioleaching of ehalcopyrite with Thiobacillus ferrvoxidans. Hydrometallurgy, 1996, 40:1.
  • 9李宏煦,王淀佐,陈景河.细菌浸矿的间接作用分析[J].有色金属,2003,55(4):98-100. 被引量:12
  • 10Huang J H, Simard C K, Oliazadehl M, et al. pH-controlled precipitation of cobalt and molybdenum from industrial waste effluents of a cobalt electrodeposition process. Hydrometallurgy, 2004, 75:77.

二级参考文献23

  • 1浸矿技术编委会.浸矿技术[M].原子能出版社,1994..
  • 2北京矿冶研究总院 金堆城钼业公司.低品位钼矿石可浸性研究[M].,2001,6..
  • 3Tributsh H, Bennett J C. Semiconductor - electrochemical aspect of bacterial leaching oxidaction of metal sulfides with large energy gaps [J]. J Chem Tech Biotechnol, 1981. 31:565.
  • 4Tributsh H, Bennett J C. Semiconductor-electrochemical aspect of bacterial leaching Ⅱ . Survey of rate-controlling sulfide properties [J]. J Chem Tech Biotechnol, 1981, 31:627.
  • 5Fowler T A, Holmes P R, Crundwell F K. Mechanism of pyrite dissolution in the presence of Thiobacillus ferrooxidans [J].Appl Envir Microbiol, 1999, 65 : 2987.
  • 6Wolfgang Sand, Tilman Gehrke, Peter-Georg Jozsa, et al. (Bio)chemistry of bacterial leaching-direct vs indirect bioleaching[J]. Hydrometallurgy, 2001, 59 : 159 .
  • 7Crundwell F. The formation of biofilms of iron-oxidising bacteria on pyrite [J]. Minerals Engineering, 1996, 9(10) : 1081.
  • 8Blight K, Ralph D E, Thurgate S. Pyrite surfaces after bio-leaching: a mechanism for bio-oxidation [J]. Hydrometallurgy,2000, 58:227.
  • 9Lowson R T. Aqueous oxidation of pyrite by molecular oxygen [J]. Chem Rev, 1982, 82:461.
  • 10Hansford G S, Vargas T. Chemical and electrochemical basis of bioleaching processes [J]. Hydrometallurgy, 2001, 59:135.

共引文献19

同被引文献85

引证文献5

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部