期刊文献+

Krein空间中无穷维Hamilton算子的极大确定不变子空间的存在性问题(英文) 被引量:1

ON EXISTENCE OF MAXIMAL DEFINITE INVARIANT SUBSPACE OF INFINITE DIMENSIONAL HAMILTONIAN OPERATORS IN A KREIN SPACE
下载PDF
导出
摘要 本文研究了不定度规空间空间中的无穷维Hamilton算子. 利用Plus算子存在极大不变子空间的性质, 获得了无穷维Hamilton算子在Krein空间中存在极大确定不变子空间的充分条件. In this article, we study the infinite dimensional Hamiltonian operator in indefinite inner product space. By applying the property that Plus-operator has maximal invariant subspace, the sufficient conditions for the existence of maximal definite invariant subspace of infi- nite dimensional Hamiltonian operator in a Krein space K9 are given.
出处 《数学杂志》 CSCD 北大核心 2009年第6期733-737,共5页 Journal of Mathematics
基金 Supported by National Natural Science Foundation of China (10562002) Natural Science Foundation of Inner Mongolia(200508010103)
关键词 穷维Hamilton算子 Plus-算子 KREIN空间 极大正定定不变子空间 极大负定不变子空间 infinite dimensional Hamiltonian operators Plus-operators Krein space maximal positive invariant subspace maximal negative invariant subspace
  • 相关文献

参考文献3

二级参考文献15

共引文献161

同被引文献19

  • 1曹小红.3×3上三角算子矩阵的Weyl型定理[J].数学学报(中文版),2006,49(3):529-538. 被引量:8
  • 2Weyl H, Uber beschrankte quadratische Formen, deren Differenz vollstetig ist, Rend. Circ. Mat. Palermo 1909, 27: 373-392.
  • 3Schwartz J. Some results on the spectra and spectral resolutions of a class of singular integral operators[J]. Comm. Pure Appl. Math, 1962, 15: 75-90.
  • 4Coburn L A. Weyl's theorem for nonnormal operators[J]. Michigan Math J, 1966, 13: 285-288.
  • 5Berberian S K. An extension of Weyl's theoremto a class of not necessarily normal operators[J]. Michigan Math J, 1969, 16: 273-279.
  • 6Gustafson K. Necessary and sufficient conditions for Weyl's theorem[J]. Michigan Math J, 1972, 19: 71-81.
  • 7Harte R E, Lee w Y. Another note on Weyl's theorem[J]. Trans Amer Math Soc, 1997, 349: 2115- 2124.
  • 8Lee W Y. Weyl's theorem for operator matrices. Integral Equations and Operator Theory, 1998, 32: 319-331.
  • 9Lee W L. Weyl spectra of operator matrices. Pro.Amer.Math.Soc, 2000, 29: 131-138.
  • 10X Cao, M.Bin, Essential approximate point spectra and Weyl's theorem for operator matrices . Journal of mathematical analysis and applications, 2005, 304(2): 759-771.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部