期刊文献+

一个行列式不等式的进一步研究

FURTHER ANALYSIS ON A DETERMINANT INEQUALITY
下载PDF
导出
摘要 本文的目的在于改进已有的两个复矩阵的行列式的上界,以更精细的两个Hermitian正定矩阵和的行列式为基本工具.利用得到的相关一元二次不等式描述的行列式之间的关系,给出了两个复矩阵和的行列式新上界,作为应用可改进华罗庚行列式不等式的上界. In this ariticle, the main purpose is to improve the upper bound of the determinant of the sum of two complex matrices. By using the implements of the more precise determinant inequality of two Hermitian positive definite matrices, and by the result of the relationship among the determinants described by the quardratic inequality, we obtain a new upper bound of the sum of two complex matrices. As an application of our results, we improve the upper bound of Hua Loo Keng's determinant inequality.
作者 杨忠鹏
机构地区 莆田学院数学系
出处 《数学杂志》 CSCD 北大核心 2009年第6期774-778,共5页 Journal of Mathematics
基金 福建省自然科学基金资助项目(Z0511051) 莆田学院科研基金项目(2004Q002)
关键词 矩阵不等式 行列式不等式 Hermitian正定矩阵 华罗庚不等式 上界 matrix inequality determinant inequality Hermitian positive definite matrices Hua Loo Keng's determinant inequality upper bound
  • 相关文献

参考文献8

  • 1Zhang F. Schur complements and matrix inequalities in the Lowner ordering[J]. Linear Algebra Appl., 2000, 321: 399-410.
  • 2Zhang F. Matrix inequalities by means of block matrices[J]. Mathematical Inequalities & Applications, 2001, 4(4): 481-490.
  • 3Zhang F. The Schur complement and its applications[M]. New York: Springer, 2005.
  • 4Zhang F. Matrix theory: basic results and techniques [M]. New York: Springer, 1999.
  • 5Yang Zhongpeng, Yan Yumin, Feng Xiaoxia. Adances in matrix theory and applications[C]. Proceedings of the Seventh International Conference on Matrix Theory and Its Applications in China. England, UK: World Academic Press, 2006, 50-53.
  • 6杨忠鹏.华罗庚行列式不等式的推广[J].福州大学学报(自然科学版),2006,34(5):630-632. 被引量:3
  • 7华罗庚.一个关于行列式的小等式.数学学报,1955,5(4):463-470.
  • 8杨忠鹏.关于华罗庚行列式不等式的等式条件的注记[J].数学的实践与认识,2006,36(4):222-225. 被引量:3

二级参考文献5

  • 1华罗庚.一个关于行列式的不等式[J].数学学报,1955,(5):463-470.
  • 2Zhang F. Matrix Theory: Basic Results and Techniques[M]. Springer, New York, 1999.
  • 3杨忠鹏.关于“四元数自共轭矩阵与行列式的几个定理”的注记[J].数学研究与评论,1988,8(4):647-647.
  • 4Zhang F. Matrix theory: basic results and techniques[M]. New York: Springer, 1999.
  • 5杨忠鹏.关于矩阵的Bergstrom型不等式的修正[J].Journal of Mathematical Research and Exposition,2000,20(2):313-316. 被引量:2

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部