摘要
本文的目的在于改进已有的两个复矩阵的行列式的上界,以更精细的两个Hermitian正定矩阵和的行列式为基本工具.利用得到的相关一元二次不等式描述的行列式之间的关系,给出了两个复矩阵和的行列式新上界,作为应用可改进华罗庚行列式不等式的上界.
In this ariticle, the main purpose is to improve the upper bound of the determinant of the sum of two complex matrices. By using the implements of the more precise determinant inequality of two Hermitian positive definite matrices, and by the result of the relationship among the determinants described by the quardratic inequality, we obtain a new upper bound of the sum of two complex matrices. As an application of our results, we improve the upper bound of Hua Loo Keng's determinant inequality.
出处
《数学杂志》
CSCD
北大核心
2009年第6期774-778,共5页
Journal of Mathematics
基金
福建省自然科学基金资助项目(Z0511051)
莆田学院科研基金项目(2004Q002)
关键词
矩阵不等式
行列式不等式
Hermitian正定矩阵
华罗庚不等式
上界
matrix inequality
determinant inequality
Hermitian positive definite matrices
Hua Loo Keng's determinant inequality
upper bound