期刊文献+

基于关联度的注塑工艺参数稳健优化设计研究 被引量:6

Research on Robust Design of Craft Parameters in Plastic Injection Based on Relation Degree
下载PDF
导出
摘要 在注塑成形过程中,考虑塑料物性参数等随机因素波动的影响,选取最大翘曲变形量为成形质量指标,提出了基于关联度的变量筛选、神经网络响应面及蚁群优化的注塑成形工艺参数稳健设计方法。基于左侧距和位值的定义,提出了关联度的计算公式;建立了基于关联度的稳健优化模型;提出了混合交叉变异的蚁群算法。将基于关联度的稳健设计方法应用于某遥控器外壳的注塑成形工艺优化,数值模拟及实际注塑试验表明,该方法减小了最大翘曲量的标准差,并有效地提高了塑件的尺寸公差。 In plastic injection process, the fluctuating effect of random factors, such as the property parameters of plastic materials, were considered. The maximum warpage quantity was selected as a measurement of molding quality, and robust design method was put forward based on variable filter using relation degree, neural network and ant colonies algorithm. Firstly, the calculation formula of relation degree was put forward based on the definitions of left side--distance and location value, the robust optimum model of craft parameters in plastic injection process was put forward based on relation degree, the ant colonies algorithm with crossover and mutation was also put forward. The proposed robust design method based on relation degree was applied to the craft optimization of a remote controller in plastic injection process. It shows that the standard deviation of maximum warpage is decreased and the dimensional tolerance of plastic product is improved by this method, according to CAE and actual injection experiments.
机构地区 同济大学 嘉兴学院
出处 《中国机械工程》 EI CAS CSCD 北大核心 2009年第21期2627-2631,2645,共6页 China Mechanical Engineering
基金 国家自然科学基金资助项目(5057507)
关键词 注塑工艺参数 关联度 稳健优化 蚁群算法 craft parameter in plastic injection relation degree robust design ant colonies algorithm
  • 相关文献

参考文献13

二级参考文献70

共引文献211

同被引文献51

  • 1李桥兴,刘思峰.基于区间距和区间侧距的初等关联函数构造[J].哈尔滨工业大学学报,2006,38(7):1097-1100. 被引量:44
  • 2郭相坤,王晓玲,顾欢,郭亦欣,邹立壮.蚁群算法在乳液聚合单体配比优化中的应用[J].计算机与应用化学,2007,24(7):925-928. 被引量:2
  • 3Lee K S, Lin J C. Design of the Runner and Gating System Parameters for a Multi-cavity Injection Mould FEM and Neural Network [J].International Journal of Manu facture Technology,2006, 27:1089-1096.
  • 4Ozcelik B, Erzurumlu T. Comparison of the Warpage Op timization in the Plastic Injection Molding Using ANOVA, Neural Network Model and Genetic Algorithm[J]. Journal of Materials Processing Technology, 2006, 171 : 437-445.
  • 5Hasan K, Babur O, Tuncay E. Warpage Optimization of a Bus Ceiling Lamp Base Using Neural Network Model and Genetic Algorithm[J]. Journal of Materials Processing Technology,2005, 169:314-319.
  • 6Ozcelik B, lbrahim S. Warpage and Structural Analysis ot Thin Shell Plastic in the Plastic Injection Molding[J].Materials and Design,2009, 30:367- 375.
  • 7Tang S H,Tan Y J,Sapum S M, et al. The Use of Taguchi Method in the Design of Plastic Injection Mould for Reducing Warpage [J]. Journal of Materials Processing Technology, 2007, 182: 418-426.
  • 8Li Y Q, Cui Z S, Ruan X Y, et al. CAE-based six sigma for deepdrawing sheet metal process[J]. International Journal of Advanced Manufacturing Technology, 2006, 30(7-8): 631-637.
  • 9Kcehler J R, Owen A B. Computer Experiments [M]// Handbook of Statistics. New York: Elsevier Science , 1996: 261- 308.
  • 10Welch W J, Mitchell T J, Wynn H P. Design and analysis of computer experiments [ J ]. Statistics Science, 1989, 4 (4) : 409- 435.

引证文献6

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部