摘要
针对机器学习领域的一些分类算法不能处理连续属性的问题,提出一种基于词出现和信息增益相结合的多区间连续属性离散化方法.该算法定义了一个离散化过程,离散化了采用传统信息检索的加权技术生成的非二值特征词空间,然后判断原特征空间中每个特征词属于或不属于某给定子区间,将问题转换成二值表示方式,以使得这些分类算法适用于连续属性值.实验结果表明,该算法离散过程简单高效,预测精度高,可理解性强.
Aiming at the problem that some good algorithm in machine learning cann't deal with continuous attribute, the paper puts forward a method of multi-interval discretization based on term presence and information gain, which defines a diseretization procedure discretizing the non-binary term space produced by classical weighting technique of information retrieval. The problem is then transformed into binary pattern after judging the original terms belong to or not belong to one given sub-intervals so as to make it adaptable to the continuous attribute. The evaluation results show that the method is simple, efficient, precise and understandable as well.
出处
《小型微型计算机系统》
CSCD
北大核心
2009年第11期2222-2225,共4页
Journal of Chinese Computer Systems
基金
国家自然科学基金重点项目(60736008)资助
陕西省教育厅自然科学专项(09JK738)资助
关键词
机器学习
文本分类
信息增益
连续属性离散化
BOOSTING算法
machine learning
text categorization
information gain
continuous attribute discretization
boosting algorithm