期刊文献+

脑皮层视觉认知量化模型及其在目标检测定位中的应用 被引量:1

Quantitative Model of Visual Cortex and its Application in Object Detection
下载PDF
导出
摘要 MIT大学的Rieseshuber和Poggio提出了脑颞叶皮层视觉认知系统的标准量化模型(QMVC),这种前馈式层级模型很好地仿效了脑皮层视觉从简单认知元到复杂认知元的识别机理.本文由QMVC模型提取出一组新的特征矢量,这组特征矢量具有对目标变换的不变性.基于QMVC模型的特征矢量建立了新的目标识别系统结构,新目标识别系统对各类目标具有不错的识别率和ROC特性.最后本文引入了尺度窗技术,将新特征应用于复杂场景中的目标检测和定位,实验结果说明本文的新目标检测方法是有效的. Rieseshuber and Poggio from MIT proposed a standard quantitative model of visual cortex (QMVC). This feedforward hierarchical model perfect follows the visual recognition mechanisms of the cortex from simple cells to the complex cells. A set of novel features from QMVC which is invariant of object transform can be used in object recognition systems combined with classifiers. This paper proposed a new recognition system framework based on QMVC's features. We evaluated the performance of this new system on the single object recognition system and the results show excellent recognition rate and low false alarm rate than other category recognition systems. Together with a scaled window technique, those new features also work well in object detecting and localization in cluster background.
作者 刘玮 田金文
出处 《小型微型计算机系统》 CSCD 北大核心 2009年第11期2259-2263,共5页 Journal of Chinese Computer Systems
基金 国家"八六三"高技术研究发展计划项目(2007AA12Z153)资助
关键词 类目标识别 视觉脑皮层 前馈式层级系统 量化模型 尺度窗 category recognition visual cortex feed-forward hierarchical system quantitative model scaled window
  • 相关文献

参考文献19

  • 1Fukushima K. Neocognitron : a self organizing neural network model for a mechanism of pattern recognition unaffected by shift in position - J]. Biological Cybernetics, 1980,36 : 193-201.
  • 2Wersing H, Koerner E. Learning optimized features for hierarchical models of invariant recogntion [ J]. Neural Computation, 2003,15 (7) : 1559-1588.
  • 3LeCun Y, Huang F I. Learning methods for generic object recognition with invariance to pose and lighting [ C]. IEEE CVPR,2004,2: 97 -104.
  • 4Riesenhuber M, Poggio T. Hierarchical models of object recognition in cortex [J]. Nature Neuroscience,1999,2(11) :1019-1024.
  • 5Riesenhuber M, Poggio T. Models of object recognition [ J]. Nature Neuroseience ,2000,3 : 1199-1204.
  • 6Heisele M, serre T. Categorization by learning and combining object parts [ J ]. NIPS,2002,28 : 1-7.
  • 7Schneiderman H, Kanade T. A statistical method for 3D object detection applied to faces and cars [C]. IEEE CVPR,2000,746-751.
  • 8Mohan A, Papageorigious C. Example-based object detection in images by components [ J] .PAMI,2001,23:349-361.
  • 9Belongie S, Malik J. Shape matching and object recognition using shape contexts[ J]. PAMI,2002,24(4) :509-522.
  • 10Lowe D. Distinctive image features from scale-invariant keypoints [C]. IJCV,2004,60(2) :91-110.

同被引文献13

  • 1Adelson E H, Bergen J R. Spatiotemporal energy models for the perception of motion[J]. Journal of the Optical Society of America, 1985, 2(2): 284- 299.
  • 2Carandini M, Heeger D J. Summation and division by neurons in primate visual cortex[J]. Science, 1994, 264(5163) : 1333-1336.
  • 3Riesenhuber M, Poggio T. Hierarchical models of object recognition in cortex[J]. Nature Neuro- science, 1999, 2(11): 1019-1025.
  • 4Serre T, Wolf L, Poggio T. Object J'ecognition with features inspired by visual cortex[C]//Proc IEEE Conf on Computer Vision and Pattern Recognition .San Diego: IEEE Computer Society, 2005: 994- 1000.
  • 5Serre T, Wolf L, Bileschi S, et al. Robust object rec- ognition with cortex-like mechanisms[J]. IEEE Trans Pattern Analysis Machine Intelligence, 2007, 29(3) : 411-426.
  • 6Schwartz O, Pillow J W, Rust N C, et al. Spike-trig- gered neural characterization[J]. Journal of Vision, 2006, 6(4): 484-507.
  • 7Kouh M, Poggio T. A canonical neural circuit for cortical nonlinear operations [J]. Neural Computa- tion, 2008, 20(6): 1427-1451.
  • 8Bergstra J, Bengio Y, Louradour J. Suitability of V1 energy models for object classification[J]. Neu- ral Computation, 2011, 23(3): 774-790.
  • 9Heeger D J. Normalization of cell responses in cat striate cortex [J]. Visual Neuroseience, 1992, 9 (2) : 181-198.
  • 10Lecun Y. The mnist database of handwritten digits [DB/OL]. [2012-09-20]. http://yann, lecun, com/ exdb/mnist/.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部