期刊文献+

模糊粗糙神经网络特征选择方法研究 被引量:1

Fuzzy-rough Neural Network Feature Selection
下载PDF
导出
摘要 实际采集的数据中往往存在模糊不确定性和粗糙不确定性,为全面度量数据的不确定性,引入了模糊粗糙集中的模糊粗糙隶属函数概念,并结合容错能力较强的神经网络设计了一种新的模糊粗糙神经网络.该网络不仅训练速度快,且具有较好的分类效果.利用该网络设计了一种新的特征选择算法,根据精度下降指标对输入节点进行结构修剪,实现最优特征子集的搜索.通过UC I数据集实验,并与RBF网络选择结果进行比较,表明该算法具有精度高、速度快、泛化性能好等优点,是有效的. For the sake of measuring fuzzy uncertainty and rough uncertainty of real datasets, the fuzzy-rough membership function (FRMF) defined in fuzzy-rough set is introduced. A new fuzzy-rough neural network (FRNN) is constructed based on neural network implementation of FRMF. FRNN has the merits of quick learning and good classification performance. A new neural network feature selection algorithm based on FRNN is designed. The input nodes are pruned according to the descent of accuracies and at the same time the search of optimal feature subset is realized. The test results on UCI datasets show that the algorithm is quick and effective, and has better selection precision and generalization ability than RBF feature selection.
出处 《小型微型计算机系统》 CSCD 北大核心 2009年第11期2282-2285,共4页 Journal of Chinese Computer Systems
基金 军队科研项目资助
关键词 模糊粗糙隶属函数 模糊粗糙神经网络 特征选择 径向基神经网络 模糊粗糙集 fuzzy-rough membership function fuzzy-rough neural network feature selection RBF neural network fuzzy-rough set
  • 相关文献

参考文献9

  • 1Setiono R, Liu H. Neural-network feature selector[J]. IEEE Trans. on Neural Network, 1997, 8(3) :654-661.
  • 2Basak J, Mitra S. Feature selection using radial basis function networks [ J ]. Neural Comput & Applic, 1999, 8:297-302.
  • 3Sankar K Pal, Rajat K De, Basak J. Unsupervised feature evaluation: a neuro-fuzzy approach[J]. IEEE Trans. on Neural Network, 2000, 11 (2) :366-376.
  • 4Verikas A, Bacauskiene M. Feature selection with neural networks [ J ]. Pattern Recognition Letters, 2002, (23) : 1323-1335.
  • 5Dubois D, Prade H. Rough fuzzy sets and fuzzy rough sets[J]. Int. J. Gen. Syst. , 1990, (17) :191-209.
  • 6Sarkar M, Yegnanarayana B. Fuzzy-rough membership functions [ A ]. Proc. IEEE Int. Conf. on Systems, Man and Cybernetics [C]. California, USA, 1998, (2):2028-2033.
  • 7Sarkar M, Yegnanarayana B. Fuzzy-rough neural network for vowel classification[ C]. Prec. IEEE Int. Conf. on Systems, Man and Cybernetics, California, USA, 1998, 4160-4165.
  • 8张东波,王耀南.一种新型模糊-粗神经网络及其在元音识别中的应用[J].控制与决策,2006,21(2):221-224. 被引量:5
  • 9Http ://www. mleam, ics. uci. edu/MLRepository, htm1,2006.

二级参考文献12

  • 1Zadeh L A.Fuzzy Sets[J].Information and Control,1965,8(3):338-353.
  • 2Pawlak Z.Rough Set Theory and Its Application to Data Analysis[J].Cybernetics and Systems,1998,29(9):661-688.
  • 3Dubois D,Prade H.Rough Fuzzy Sets and Fuzzy Rough Sets[J].Int J of General Systems,1990,17(2-3):191-208.
  • 4Sarkar M,Yegnanarayana B.Rough-fuzzy Membership Functions[A].The 1998 IEEE World Congress on Computational Intelligence[C].Alaska,1998,1:796-801.
  • 5Sarkar M,Yegnanarayana B.Fuzzy-rough Membership Functions[A].1998 IEEE Int Conf on Systems,Man and Cybernetics[C].California,1998,2:2028-2033.
  • 6Nanda S.Fuzzy Rough Sets[J].Fuzzy Sets and Systems,1992,45(2):157-160.
  • 7Ponthap Rojanavasu,Quin Pinngern.Extended Rough Fuzzy Sets for Web Search Agent[A].25th Int Conf Information Technology Interfaces[C].Cavtat,2003:402-407.
  • 8Sarkar M,Yegnanarayana B.Rough-fuzzy Set Theoretic Approach to Evaluate the Importance of Input Features in Classification[A].1997 Int Conf on Neural Networks[C].Texas,1997,3:1590-1595.
  • 9Sarkar M.Fuzzy-rough Nearest Neighbors Algorithm[A].2000 IEEE Int Conf on Systems,Man and Cybernetics[C].Nashville,2000,5:3556-3561.
  • 10Wang Y F.Mining Stock Price Using Fuzzy Rough Set System[J].Expert System with Applications,2003,24(1):13-23.

共引文献4

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部