期刊文献+

基于组合贝叶斯网络的电力变压器故障诊断 被引量:22

Combinatorial Bayes network in fault diagnosis of power transformer
下载PDF
导出
摘要 针对电力变压器故障诊断中的信息和知识具有随机性和不确定性的特点,提出了一种利用AdaBoostM1算法构建组合贝叶斯网络进行变压器故障诊断的方法。AdaBoostM1算法能够提高分类器的性能,为此,将若干个不同结构的TAN看作一系列基分类器,进行boosting迭代。即依次在训练集上训练每个基分类器。第1个基分类器用原始的训练集训练,其他基分类器的训练决定于在其之前产生的分类器的表现,被已有分类器错误判断的实例将以较大的概率出现在新分类器的训练集中,最后,这些分类器组合成为一个贝叶斯网络组合分类器。由于贝叶斯网络是用来表示变量间连接概率的图形模式,它提供了一种自然的表示因果信息的方法,用来发现数据间的潜在信息,因此应用中显示了该方法对于变压器故障诊断的适用性。在讨论变压器故障空间的基础上,针对已积累的故障变压器的大量油中溶解气体等数据,利用boosting迭代,并在此基础上构造出组合贝叶斯网络诊断模型,实现了变压器故障诊断,有利于提高诊断的准确性。此外,通过与其他组合诊断的方法进行比较进一步表明了该模型的有效性。 Due to the randomness and uncertainty of power transformer fault diagnosis data, a transformer fault diagnostic method based on combinatorial Bayes network with AdaBoostM1 is proposed. As AdaBoostM1 algorithm can improve the performance of classifier, several different TAN(Tree Augmented Naive Bayes) are taken as a series of basic classifiers carrying out the boosting iteration. That is,every basic classifier is trained using training set. The first basic classifier is trained using the original training set and the others are trained according to the behavior of former one. Those objects that were wrong diagnosed are presented in the new training set with bigger probability. All these classifiers are composed to the combinatorial Bayes network. Bayes network is a graphic mode presenting the connection probability between variables,which is used to provide a way to represent the consequence information and to find the potential information ,very suitable for the transformer fault diagnosis. Based on the discussion of transformer fault space,the combinatorial Bayes network diagnosis model is constructed by the boosting iteration with the dissolved gas data of faulty transformers,which is used to realize the power transformer fault diagnosis with higher diagnostic correctness. Comparison with other combinatorial diagnostic methods shows its effectiveness.
出处 《电力自动化设备》 EI CSCD 北大核心 2009年第11期6-9,共4页 Electric Power Automation Equipment
基金 国家自然科学基金项目(60574037) 河北省自然科学基金项目(E2009001392) 华北电力大学校内科研基金资助项目(200811014)~~
关键词 电力变压器 油中溶解气体分析 故障诊断 贝叶斯网络 组合 分类器 power transformer dissolved gas analysis fault diagnosis Bayes network combination classifier
  • 相关文献

参考文献14

  • 1中国电力企业联合会.GB/T7252-2001变压器油中溶解气体分析和判断导则[S].北京:中国标准出版社,2001.
  • 2LIANG Yongchun,SUN Xiaoyun,LIU Donghui,et al. Applicationof combinatorial probabilistic neural network in fault diagnosis of power transformer[C]//2007 International Conference on Machine Learning and Cybernetics. Hong Kong,China:The Hong Kong Poly University, 2007 : 1115 - 1119.
  • 3ZHAO Wenqing,ZHU Yongli. Rough set theory for fault diagnose for data mining on power transformer[C]//IEEE TENCON 2006. Hong Kong,China:IEEE,2006:1-4.
  • 4WEI Shouzhi,JIN Ningde. Fault diagnosis system based on information fusion and embedded internet[C]//2007 IEEE International Conference on Integration Technology. Shenzhen,China: IEEE, 2007 : 203 - 207.
  • 5WANG Chenhao,HUANG Huixian,XIAO Yewei,et al. Fault diagnosis of power transformers based on BP network with colonial selection algorithm [ C ]//Third International Conference on Natural Computation. Haikou,China:Hainan University,2007 : 13 - 16.
  • 6JIA Honghong,DAI Wenzhan. Fault diagnosis against oil- immersed transformer based on PNN and GM (1,1) [C]//2007 IEEE International Conference on Integration Technology'. Shenzhen,China :IEEE,2007 : 394- 397.
  • 7BABU P,KALAYATHI S. Use of wavelet and neural network (BPFN) for transformer fault diagnosis[C]//2006 IEEE Conference on Electrical Insulation and Dielectric Phenomena. Kansas City, Missouri, USA : IEEE, 2006 : 93 - 96.
  • 8董明,屈彦明,周孟戈,严璋.基于组合决策树的油浸式电力变压器故障诊断[J].中国电机工程学报,2005,25(16):35-41. 被引量:41
  • 9王永强,律方成,李和明.基于贝叶斯网络和油中溶解气体分析的变压器故障诊断方法[J].电工技术学报,2004,19(12):74-77. 被引量:23
  • 10FREUND Y,SCHAPIRE R E. Experiments with a new boos-ting algorithm[C ]//Proceedings of the 13th International Conference on Machine Learning. Bari,haly:Morgan Kaufmann, 1996: 148- 156.

二级参考文献40

  • 1彭宁云,文习山,王一,陈江波,柴旭峥.基于线性分类器的充油变压器潜伏性故障诊断方法[J].中国电机工程学报,2004,24(6):147-151. 被引量:35
  • 2[4]Su Q, Mi C, Lai L, et al. A fuzzy dissolved gas analysis method for the diagnosis of multiple faults in a transformer. IEEE Transactions on Power System,2000, 15(2): 593~598.
  • 3[5]Islam S M, Wu T, Ledwich G. A novel fuzzy logic approach to transformer fault diagnosis. IEEE Transactions on Dielectrics and Electrical Insulation, 2000, 7(2): 177~186
  • 4[9]Larranaga, Poza P M, et al. Structure learning of bayesian networks by genetic algorithms: A performance analysis of control parameters. IEEE Journal on Pattern Analysis and Machine Intelligence, 1996, 18(9) : 912~926
  • 5GB/T7252-2001.变压器油中溶解气体分析和判断导则[S].[S].,..
  • 6Quinlan J R. C4.5: Programs for machine learning[M]. San Mateo,Calif: Morgan Kaufmann, 1993.
  • 7Quinlan J R. Discovering rules from large collections of examples: a case study. in: michie d, ed. Expert systems in the micro electronic age[M]. Edinburgh: Edinburgh University Press, 1993.
  • 8Zhou ZhiHua, Jiang Yuan. NeC4.5: Neural ensemble based C4.5[J]. IEEETrans. on Knowledge and Data Engineering, 2004,16(6): 770-773.
  • 9Duval M, Langdeau F, Gervais P et al. Acceptable gas-in-oil levels in generation and transmission power transformers[C]. Electrical Insulation and Dielectric Phenomena, Annual Report, Conference on 1990.
  • 10陈化钢.电力设备预防性试验方法及诊断技术[M].北京:中国科学技术出版社,2004..

共引文献77

同被引文献347

引证文献22

二级引证文献351

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部