期刊文献+

基于双谱识别和人工免疫网络的智能故障检测 被引量:2

Intelligent fault diagnosis methods based on bispectrum recognition and artificial immune network
下载PDF
导出
摘要 针对故障诊断中人为评估振动谱图而导致诊断结果不稳定的情况,提出基于振动谱图模式识别的故障诊断方法,利用Hilbert包络分析和双谱分析的组合方法来提取振动信号的故障频率特征,进而采用双谱图的灰度共生矩阵(GLCM)及其特征统计量来表征故障特征.改进了人工免疫网络(AIN)分类算法,将特征统计量作为抗原,通过对抗原的学习训练,形成记忆抗体集;通过判断待检验抗原与记忆抗体的匹配程度,实现故障分类识别.滚动轴承故障诊断实践证明,人工免疫网络分类方法具有良好的适应性,取得了较BP神经网络更好的检测准确率. A diagnosis method based on recognition of vibration spectra was developed aiming at the situation that manual observation of vibration spectra would lead to instability in the diagnosis. A combined method of Hilbert analysis and bispectrum analysis was proposed to extract the frequency characteristics from vibration signs. Then gray level co-occurrence matrix (GLCM) and its characteristic statistics generated from the bispectrum spectrum were selected to denote fault features. Furthermore, the artificial immune network (AIN) classification algorithm was improved by training the characteristic statistics as antigen and forming the memory antibody set. Fault classification was achieved through calculating the matching degree between test antigen and memory antibody set. Practice of the rolling bearing fault diagnosis shows that the AIN classification method has good adaptability, and achieved better detection accuracy than BP neural network.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2009年第10期1777-1782,共6页 Journal of Zhejiang University:Engineering Science
关键词 希尔伯特分析 双谱 灰度共生矩阵 人工免疫网络 智能故障检测 滚动轴承 Hilbert analysis bispectrum gray level co-occurrence matrix(GLCM) artificial immune network(AIN) intelligent fault diagnosis rolling bearing
  • 相关文献

参考文献8

  • 1刘肃平,陈强.数字图像处理技术在车牌识别中的应用[J].计算机与现代化,2006(8):119-121. 被引量:7
  • 2Bearing data center. Case western reserve university [EB/OL]. [2008-06-20]. http://www, eees. cwru. edu/laboratory/bearing.
  • 3吴正国 夏立 尹为民.现代信号处理技术[M].武汉:武汉大学出版社,2003..
  • 4HAWLICK R M. Statistical and structural approaches to texture [J]. Proceedings of IEEE, 1979, 67(5):786 - 804.
  • 5BARALDI A, PANNIGG-IANI F. An investigation of the textural characteristics associated with gray level co-occurrence matrix statistical parameters [J]. IEEE Trans on Geoscience and Remote Sensing, 1995, 33(2) :293 - 304.
  • 6DE CASTRO L N, VON ZUBEN F J. An evolutionary immune system network for data clustering[C]// Proceedings of the sixth Brazilian Symposium on Neural Networks. Oakland: IEEE Computer Socie:2000, 1:84 - 89.
  • 7熊浩,孙才新,陈伟根,杜林,廖玉祥.电力变压器故障诊断的人工免疫网络分类算法[J].电力系统自动化,2006,30(6):57-60. 被引量:30
  • 8李德毅,刘常昱,杜鹢,韩旭.不确定性人工智能[J].软件学报,2004,15(11):1583-1594. 被引量:400

二级参考文献23

共引文献454

同被引文献24

  • 1代建华,陈卫东,潘云鹤.基于粗糙集的综合推理模型[J].浙江大学学报(工学版),2006,40(9):1526-1530. 被引量:4
  • 2宋英姿,李庆武,王晓玲,倪雪.球坐标系下小波收缩去噪方法的改进[J].河海大学常州分校学报,2007,21(1):1-3. 被引量:14
  • 3王翔飞,须文波.属性约简的一种新计算方法[J].微电子学与计算机,2007,24(4):99-101. 被引量:6
  • 4WUJD, WANGY H, CHIANGP H, et al. A study of fault diagnosis in a scooter using adaptive order tracking technique and neural network [J]. Expert Systems with Applications, 2009, 36(1): 49- 56.
  • 5WU J D, LIU C H. Investigation of engine fault diagnosis using discrete wavelet transform and neural network [J]. Expert Systems with Applications, 2008, 35 (3): 1200 - 1213.
  • 6PIRMORADI F N, SASSANI F, SILVA C D. Fault detection and diagnosis in a spacecraft attitude determination system [J]. Acta Astronautica, 2009, 65(5) : 710 - 729.
  • 7PAWLAK Z. Rough sets [J]. International Journal of Computer and Information Science, 1982, 11(5) : 341 - 356.
  • 8GENG Z, ZHU Q. Rough set-based heuristic hybrid recognizer and its application in fault diagnosis [J]. Expert Systems with Applications, 2009, 36(2): 2711 - 2718.
  • 9TANY H, HE YG, CUI C, et al. A novel method for analog fault diagnosis based on neural networks and genetic algorithm [J]. IEEE Transactions on Neural Networks, 2008, 57(11): 2631-2639.
  • 10RYSZARD N. Evaluation of vibroacoustic diagnostic symptoms by means of the rough sets theory [J]. Computers in Industry, 1992, 20 (2) : 141 - 152.

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部