期刊文献+

大区间参数桁架的动力学拓扑优化 被引量:1

Dynamic Topology Optimization of Trusses with Large Interval Parameters
下载PDF
导出
摘要 基于最大最小化思想,建立了包含目标函数、设计变量和约束函数在内的大区间参数拓扑优化模型。考虑的区间参数主要有弹性模量、结构密度和桁架截面面积。为了确保优化效率,采用了基于遗传算法的一些优化策略,如个体有效性检查、结构稳定性检查等。结果表明:大区间参数区间半径的大小及扰动参数的数目对桁架结构的拓扑优化有很明显的影响;考虑参数的区间半径可以有效的保证结构的安全性能。 The dynamic topology optimization for structures with large interval parameters is systematically investigated. Based on the idea of minimizing maximal value, the topology optimization model with large interval parameters is built, including the objective function, design variables and constraint functions. Large interval parameters considered are elastic modulus, structural density and cross-section areas of truss. In order to ensure optimal efficiency, there are some optimization strategies which are based on genetic algorithms, such as the individual effectiveness checking, topology stability checking, etc. The results show that the radius of large interval parameter and the number of disturbance parameters of truss have a very clear effect on the topology optimization of truss, and the topology optimization considering interval radius can effectively ensure structural safety after dynamic topology optimization.
出处 《机械科学与技术》 CSCD 北大核心 2009年第11期1491-1495,共5页 Mechanical Science and Technology for Aerospace Engineering
基金 国家自然科学基金项目(10472093) 中国博士后科学基金项目(20060390232)资助
关键词 桁架 拓扑 大区间参数 遗传算法 truss topology large interval parameters genetic algorithms
  • 引文网络
  • 相关文献

参考文献3

  • 1徐斌,姜节胜.区间参数智能桁架结构/控制一体化拓扑优化设计[A].中国力学大会会议论文集[C],2007.
  • 2徐斌,靳玉佳,姜节胜.随机激励下区间参数压电结构/控制的一体化拓扑优化设计[A].中国振动工程学会随机振动专业委员会会议论文集[C].2008.
  • 3吴杰,陈塑寰.区间参数振动系统的动力优化[J].力学学报,2003,35(3):373-376. 被引量:14

二级参考文献8

  • 1Cheng GD, Olhoff N. An investigation concerning optimal design of solid elastic plates, Int Jour Solids Stru, 1981,17:305-323.
  • 2Haftka ItT, Gurdal z, Kamat MP. Elements of Structural Optimization. Kluwer Academic Publishers, 1990.
  • 3Pandey MD, Sherbourne AN. Methods of shape optimization in plate buckling. Jour Engineering Mech, 1992,118(6): 1249-1266.
  • 4Moore RE. Methods and Applications of Interval Analysis.Philadelphia: SIAM, 1979.
  • 5Alefeld G, Herzberger J. Introductions to Interval Computations. New York: Academic Press, 1983.
  • 6Hansen Eldon. Global Optimization Using Interval Analysis. New York: Marcel Dekker Inc, 1992.
  • 7Chen SH, Lian HD, Yang XW. Interval displacement analysis for structures with interval parameters. Int J Num Methods in Eng, 2002, 53(2): 393-407.
  • 8Chen SH, Ynng XW. Interval finite element method for beam structures. Finite Element in Anogysis and Design,2001, 34(1): 75-88.

共引文献13

同被引文献7

引证文献1

二级引证文献1

;
使用帮助 返回顶部