求解变分不等式的Ishikawa类迭代算法
An Ishikawa Type Iterative Algorithm for Variational Inequality
摘要
本文讨论Banach空间中子集非紧的情况下的变分不等式数值解.提出了求解相应问题的Ishikawa类迭代算法,证明了算法的子列收敛性和全局收敛性.同时也证明了变分不等式解的存在性.
In this paper,we study the numerical solution for variational inequality in non- compact subset of Banach spaces. We construct an Ishikawa type iterative algorithm and analyze convergence of the subsequence and the global convergence of the algorithm. Meanwhile, we indirectly prove the existence of the solution for variational inequality.
出处
《应用数学》
CSCD
北大核心
2009年第4期737-742,共6页
Mathematica Applicata
基金
国家自然科学基金(10671060)
关键词
变分不等式
广义投影算子
Ishikawa类迭代
紧算子
Variational inequatlity
Generalized projection operator
Ishikawa type iterative algorithm
Compact operator
参考文献11
-
1Xiu N H, Zhang J Z. Some recent advances in projection-type methods for variational inequatlities[J]. Journal of Computational and Applied Mathematics, 2003,153:559-585.
-
2Harker P T,Pang J S. Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory,algorithms and applications[J]. Mathematical Programming, 1990,48:161-220.
-
3Li J. On the existence of solutions of variational inequalities in Banaeh spaces[J]. Journal of Mathematical Analysis and Applications, 2004,295 : 115-126.
-
4Fan J H. A Mann type iterative scheme for variational inequalities in noncompaet subsets of Banach spaces[J]. Journal of Mathematieal Analysis and Applications, 2008,337 : 1041-1047.
-
5Liu Z Q. Convergence and almost stability of Ishikawa iterative scheme with errors for m- accretive operators[J]. Computers and Mathematics with Applications,2004,47:767-778.
-
6Alber Y, Notik A. On some estimates for projection operator in Banach spaee[J]. Communications on Applied Nonlinear Analysis, 1995,2:47-56.
-
7Li J. The generalized projection operator on reflexive Banach spaces and its applications[J]. Journal of Mathematical Analysis and Applications, 2005,306:55-71.
-
8Alber Y. Metric and generalized projection operators in Banach spaces: properties and applications[A]. Kartsatos. Theory and Applications of Nonlinear Operators of Monotonic and Accretive Type[C]. New York: Marcel Dekker, 1996.
-
9Chidume C E,Li J L. Projection methods for approximating fixed points of Lipsehitz suppressive operators[J]. Panameriean Mathematieal Journal, 2005,15: 29-40.
-
10Kamimura S,Takahashi W. Strong convergence of a proximal-type algorithm in a Banach space[J]. SIAM Journal on Optimization, 2002,13 : 938-945.