期刊文献+

无穷维自回归过程的中偏差原理(英文)

Moderate Deviation Principle for Infinite-dimensional Autoregressive Processes
下载PDF
导出
摘要 本文考虑无穷维自回归过程经验协方差函数的中偏差原理,仅对自回归过程的随机扰动项做了高斯可积性的假设,这个条件比[4]中的对数Sobolev不等式要弱很多.主要利用了m-相依随机变量的中偏差结果和Ellis-Gartner定理,推广了[6]的结果. A moderate deviation principle of the empirical covariance for infinite-dimensional autoregressive processes is established. The main assumption on the autoregressive process is the Gaussian integrability condition for the noise, which is weaker than the assumption of Logarithmic Sobolev Inequality in [-4]. By the moderate deviation principles of m- dependent random variables and Ellis- Gartner Theorem,we extend the results in [6].
作者 沈思 苗雨
出处 《应用数学》 CSCD 北大核心 2009年第4期791-798,共8页 Mathematica Applicata
基金 Supported by the Key Science Project for Young Teachers of Minzu University of China
关键词 中偏差 自回归过程 Moderate deviation Autoregressive processes
  • 相关文献

参考文献9

  • 1Bercu B,Gamboa F, Rouault A. Large deviations for quadratic forms of stationary Gaussian processes[J]. Stochastic Process. Appl. , 1997,71: 75-90.
  • 2Bryc W, Dembo A. Large deviations for quadratic functionals of Gaussian processes[J]. J. Theoret. Probab. ,1997,10 : 307-322.
  • 3Chen X. Moderate deviations for m- dependent random variables with Banach space values[J]. Stat. Prob. Lett., 1997,35:123-134.
  • 4Djellout H,Guillin A,Wu L. Moderate deviations of empirical periodogram and non-linear functionals of moving average proeesses[J]. Ann. I. H. Poineare-PR, 2006,42: 393-416.
  • 5Donsker M D,Varadhan S R S. Large deviations for stationary processes[J]. Comm. Math. Phys. , 1985, 97: 187-210.
  • 6Mas A, Menneteau L. Large and moderate deviations for infinite-dimensional autoregressive processes [J]. J. Multi. Analy. , 2003,87 : 241-260.
  • 7Menneteau L. Some laws of the iterated logarithm in Hilbertian autoregressive models[J]. J. Multi. Analy. , 2005,92 : 405-425.
  • 8Worms J. Moderate deviations for stable Markov chains and regression models[J]. Electron. J. Probab. , 1999,4:1-28.
  • 9Wu L M. On large deviations for moving average processes[A]. Probability, Finance and Insurance[C]. Singapour: World Scientific, 2004.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部