期刊文献+

具有不连续神经激励的循环神经网络的周期解存在性(英文)

Existence of Periodic Solutions for Recurrent Neural Networks with Discontinuous Neuron Activations
下载PDF
导出
摘要 本文研究了一类可以描述为右端不连续微分方程的循环神经网络模型.在并不要求激励函数连续、有界及单调非减的情况下,通过利用线性矩阵不等式和微分包含中的Cellina近似选择定理,得到了该神经网络模型存在周期解的充分条件.最后,给出了一个数值例子用以说明本文结果的有效性. In this paper, we consider a class of recurrent neural network models which are described by differential equations with discontinuous right-hand side. Without presuming the activation functions to be continuous, bounded and monotone nondecreasing, by utilizing linear matrix inequality and CeUina approximate selection theory in differential inclusion,a sufficient condition is provided to ensure existence of periodic solutions for that recurrent neural networks. An example is given to illustrate the effectiveness of our results.
出处 《应用数学》 CSCD 北大核心 2009年第4期870-875,共6页 Mathematica Applicata
基金 Supported by the National Natural Science Foundation of China (10771055,60835004) the Key Program of Hunan Basic Research for Applications (2008FJ2008)
关键词 不连续循环神经网络 微分包含 Filippov解 周期解 Discontinuous recurrent neural networks Differential inclusion Filippov solutions Periodic solutions
  • 相关文献

参考文献12

  • 1Cao J,Wang J. Global exponential stability and periodieity of recurrent neural networks with time delays [J]. IEEE Trans. Circuits Syst. I, 2005,52 : 920-931.
  • 2Song Q,Cao J. Global exponential stability and existence of periodic solutions in BAM networks with delays and reaction-diffusion terms[J]. Chaos Solitons and Fraetals, 2005,23:421-430.
  • 3Liu Z, Chen A,Cao J, H uang L. Existence and global exponential stability of periodic solution to self-connection BAM neural networks with delays[J]. IEEE Trans. Circuits Syst.I,2003,59:1162-1173.
  • 4Liu B, Huang L. Existence of periodic solutions for cellular neural networks with complex deviating arguments[J]. Appl. Math. Lett. ,2007,20 : 103-109.
  • 5Forti M,Nistri P. Global convergence of neural networks with discontinuous neuron activations[J]. IEEE Trans. Circuirs Syst. I,2003,50: 1421-1435.
  • 6Forti M,Grazzini M, Nistri P,Dancioni L. Generalized Lyapunov approach for convergence of neural network with discontinuous or non-Lipschitz activations[J]. Phys. D, 2006,214: 88-99.
  • 7Forti M. M-matrices and global convergence of discontinuous neural networks[J]. Int. J. Circ. Theor. Appl. , 2007,35 : 105-130.
  • 8Lu W,Chen T. Dynamical behaviors of Cohen-Grossberg neural networks with discontinuous activation functions[J]. Neural Networks, 2005,18 : 231-242.
  • 9Papini D, Taddei V. Global exponential stability of the periodic solution of a delayed neural network with discontinuous activations[J]. Phys. Lett. A,2005,343: 117-128.
  • 10Filippov A F. Differential equations with discontinuous righthand side[A]. Mathematics and its Applications (Soviet Series) [C], Boston, MA : Kluwer Academic, 1988.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部