期刊文献+

一类带扩散的捕食模型非常数正解的存在性(英文) 被引量:1

Existence of Non-constant Positive Solutions to a Predator-Prey Model with Diffusion
下载PDF
导出
摘要 本文考虑了一类带扩散的捕食模型的平衡态问题.首先给出了正解的先验估计,进而,分别借助于能量方法和拓扑度理论得出了因参数的变化而引起的非常数正解的不存在性和存在性结果. In this paper,the steady-states of a predator-prey system with diffusion are considered. First,the authors give a priori estimates of positive solutions, and then study the non-existence,existence of non:constant positive solutions as some parameters are varied by using the energy methods and the topological degree theory, respectively.
作者 邵翠 陈文彦
机构地区 东南大学数学系
出处 《应用数学》 CSCD 北大核心 2009年第4期902-907,共6页 Mathematica Applicata
基金 Supported by NSFC(10601011)
关键词 捕食模型 先验估计 非常数正平衡解 存在性 拓扑度理论 Predator-prey model A priori estimates Non-constant positive solutions Existence Topological degree theory
  • 相关文献

参考文献1

二级参考文献10

  • 1[6]Rabinowitz, P., Some global results for nonlinear eigenvalue problems, J. Func. Anal., 7(1971), 487-513.
  • 2[7]Rai, B., Freedman, H. I. & Addicott, J. F., Analysis of three species modles of mutualism in predatorprey and competitive systems, Math. Biosc., 65(1983), 13-50.
  • 3[8]Smoller, J., Shock Waves and Reaction-Diffusion Equations, Second edition, Springer-Verlag, New York, 1994.
  • 4[9]Wang, M. X., Non-constant positive steady-states of the Sel'kov model, J. of Differential Equations,190:2(2003), 600-620.
  • 5[10]Zheng, S. N., A reaction-diffusion system of a predator-prey-mutualist model, Math. Biosc., 78(1986),217-245.
  • 6[1]Lin, C. S., Ni, W. M. & Takagi, I., Large amplitude stationary solutions to a chemotais systems, J.Differential Equations, 72(1988), 1-27.
  • 7[2]Ni, W. M., Diffusion, cross-diffusion and their spike-layer steady states, Notices Amer. Math. Soc.,45:1(1998), 9-18.
  • 8[3]Nirenberg, L., Topics in Nonlinear Functional Analysis, Courant Institute of Mathematical Sciences,New York, 1973-1974.
  • 9[4]Pang, P. Y. H. & Wang, M. X., Non-constant positive steady states of a predator-prey system with non-monotonic functional response and diffusion, Proc. of the London Math. Soc., 88:1(2004), 135-157.
  • 10[5]Pang, P. Y. H. & Wang, M. X., Qualitative analysis of a ratio-dependent predator-prey system with diffusion, Proc. Roy. Soc. Edinburgh A, 133:4(2003), 919-942.

共引文献3

同被引文献3

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部