期刊文献+

求解TSP的改进自组织PSO算法 被引量:6

Improved self-organizing particle swarm optimization for Traveling Salesman Problem
下载PDF
导出
摘要 针对粒子群算法(PSO)的早熟收敛现象,从种群多样性出发,基于自组织临界性特点改进PSO算法的参数设置,采用自组织的惯性权重和加速系数,并增加了变异算子。借鉴交换子和交换序概念,设计出了能直接在离散域进行搜索的改进的自组织PSO算法。用于旅行商问题(TSP)的求解,并与基本及其他典型改进PSO算法进行性能比较。实验结果证实改进的自组织PSO算法是有效的。 To alleviate the premature convergence of basic particle swarm optimization (PSO),an improved self-organized particle swarm optimization(SOPSO) algorithm is proposed,whose parameter setting are improved based on the characteristics of self-organizing criticality in the interest of the diversity of population.That is,the self-organizing inertia weight and acceleration coefficients are applied and the mutation operator is introduced.In view of the concept of "Swap operator" and "Swap sequence" , the improved SOPSO algorithm which can search in the discrete domain directly is designed to solve the traveling salesman problem (TSP).Then compare the results of the improved algorithm with those of the basic PSO and other improved PSO algorithm.The results show that the improved SOPSO algorithm is effective.
出处 《计算机工程与应用》 CSCD 北大核心 2009年第31期30-33,共4页 Computer Engineering and Applications
基金 国家自然科学基金No.60773224 陕西师范大学研究生创新基金No.2009CXS020~~
关键词 粒子群算法 自组织 种群多样性 旅行商问题(TSP) Particle Swarm Optimization(PSO ) self-organizing population diversity Traveling Salesman Problem(TSP)
  • 相关文献

参考文献8

  • 1He XX,Zhe YL,Hu HC,et al.A new algorithm for TSP based on swarm intelligence[C]//Proc of the 6th World Congress on Intelligent Control and Automation.Piscataway:Institute of Electrical and Electronics Engineer Inc.,2006:3241-3244.
  • 2Wang KP,Huang L,Zhou CG,et al.Particle swarm optimization for traveling salesman problem[C]//Proc of the 2nd Int'l Conf on Machine Learning and Cybernetics.Piscataway,NJ:IEEE Service Center,2003 : 1583-1585.
  • 3高海兵,周驰,高亮.广义粒子群优化模型[J].计算机学报,2005,28(12):1980-1987. 被引量:102
  • 4介婧,曾建潮,韩崇昭.基于群体多样性反馈控制的自组织微粒群算法[J].计算机研究与发展,2008,45(3):464-471. 被引量:25
  • 5Kennedy J,Eberhart RC.Particle swarm optimization[C]//Proc of IEEE Int'l Conf on Neural Networks.Piscataway, NJ: IEEE Press, 1995 : 1942-1948.
  • 6Shen Y X,Zeng C H.A Self-organizing Particle Swarm Optimization algorithm and application[C]//Third Int'l Conf on Natural Computation(ICNC 2007).Haikou:IEEE Computer Society,2007:668-672.
  • 7Ratnaweera A, Halgamuge S K,Watson H C.Self-organizing hierarchical particle swarm optimizer with time-varying acceleration codfficients[C]//IEEE Trans on Evolutionary Computation,2004,8(3): 240-255.
  • 8郭文忠,陈国龙.求解TSP问题的模糊自适应粒子群算法[J].计算机科学,2006,33(6):161-162. 被引量:25

二级参考文献33

  • 1曾建潮,崔志华.一种保证全局收敛的PSO算法[J].计算机研究与发展,2004,41(8):1333-1338. 被引量:160
  • 2赫然,王永吉,王青,周津慧,胡陈勇.一种改进的自适应逃逸微粒群算法及实验分析[J].软件学报,2005,16(12):2036-2044. 被引量:134
  • 3Bergh F.,Engelbrecht A.P..Training product unit networks using cooperative particle swarm optimizers.In:Proceedings of International Joint Conference on Neural Networks,Washington,2001,1:126~131
  • 4Yoshida H.,Kawata K.,Yoshikazu F..A Particle swarm optimization for reactive power and voltage control considering voltage security assessment.IEEE Transactions on Power System,2000,15(4):1232~1239
  • 5Gao L.,Gao H.B..Particle swarm optimization based algorithm for cutting parameters selection.In:Proceedings of IEEE World Congress on Intelligent Control and Automation,Hangzhou,2004,4 :2847~ 2851
  • 6Parsopoulos K.E.,Vrahatis M.N..Recent approaches to global optimization problems through particle swarm optimiza tion.Natural Computing,2002,12(1):235~306
  • 7Salman A.,Ahmad I..Particle swarm optimization for task assignment problem.Microprocessors and Microsystems,2002,26(8):363~371
  • 8Kennedy J.,Eberhart R.C..A discrete binary version of the particle swarm algorithm.In:Proceedings of IEEE Conference on Systems,Man,and Cybernetics,Orlando,1997,5:4104~4108
  • 9Kennedy J.,Eberhart R.C..Particle swarm optimization.In:Proceedings of IEEE International Conference on Neutral Net works,Australia,1995,4:1942~1948
  • 10Shi Y.H.,Eberhart R.C..A modified particle swarm optimizer.In:Proceedings of IEEE Conference on Evolutionary Computation,Anchorage,1998,69~73

共引文献147

同被引文献50

引证文献6

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部