期刊文献+

协同进化算法及在软测量建模中的应用

Cooperative evolutionary algorithm and its application in soft sensor modeling
下载PDF
导出
摘要 综合基本微粒群优化算法(Particle Swarm Optimization,PSO)和模拟退火(Simulated Annealing,SA)算法,提出了一种新型的协同进化方法(SAPSO)。通过PSO和SA两种算法的协同搜索,可以有效地克服微粒群算法的早熟收敛。用SAPSO训练神经网络,并将其用于延迟焦化装置粗汽油干点和高压聚乙烯熔融指数的软测量建模。与几种常见建模方法比较,结果表明该软测量模型具有更高的测量精度和更好的泛化性能,能够满足现场测量要求。 A novel cooperative evolutionary algorithm (SAPSO) is proposed by taking advantage of both Particle Swarm Optimization (PSO) and Simulated Annealing (SA) algorithm.It can validly overcome the premature problem in PSO through cooperative search between PSO and SA.Then,SAPSO is employed to train artificial neural network and applied to soft-sensing of gasoline endpoint of delayed coking plant and melt-index of High Pressure Low-density Polyethylene yield.Its performance is compared with existing soft sensor modeling methods.The simulation results show that this model has higher measuring preeision as well as better generalization ability, and can satisfy the need of spot measurement.
出处 《计算机工程与应用》 CSCD 北大核心 2009年第31期241-244,共4页 Computer Engineering and Applications
关键词 微粒群优化算法 模拟退火 神经网络 软测量 Particle Swarm Optimization( PSO ) algorithm Simulated Annealing(SA) Neural Network(NN ) soft-sensor
  • 相关文献

参考文献7

  • 1Kennedy J,Eberhart R C.Particle swarm optimization[C]//Proceedings of IEEE International Conference on Neural Networks.Australia:IEEE Service Center, 1995:1942-1948.
  • 2Fukuyama Y.Fundamentals of particle swarm techniques[C]//Lee K Y,El-Sharkawi M A.Modern Heuristic Optimization Techniques with Applications to Power Systems.[S.l.]:IEEE Power Engineering Society, 2002: 45-51.
  • 3Parsopoulos K E,Varhatis M N.Particle swarm optimization method in multiobjective pmblem[C]//Proc,ACM Symp on Applied Computing, Madrid, Spain, 2002 : 603-607.
  • 4Shi Y,Eberhart R C.A modified particle swarm optimizer[C]//Proc IEEE International Conference on Evolutionary Computation.Piscataway, USA: IEEE Press, 1998 : 69-73.
  • 5Laarboven P, Aarts E.Simulated Annealing : Theory and Applications[M].Dordrecht: D Reidel Publishing Company, 1987.
  • 6Takahama Sakai S.Structural learning of neural networks[C]//IEEE International Conference on Systems, Man and Cybernetics, 2004, 12( 1 ) : 3507-3512.
  • 7Rovithakis G A,Chalkiadakis I,Zervajis M E.High-order neural network structure selection using genetic algorithms[J].IEEE Trans on Systems, Man and Cybernetics, 2004,34( 1 ) : 150-158.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部