摘要
讨论了素环理想上导子的性质.设R是6-扭自由的素环,I是R的非零理想,Z是环R的中心,若存在非零导子d满足对任意x∈I均有d(x3)∈Z,且I∩Z≠{0}或对任意的x∈I均有[x,d(x2)]∈Z,R则环交换.
In this paper, we discuss the property of ideals in prime rings with derivations. Let R is a prime rings with 6 - torsion free, I is a nonzero ideal of R and Z is the center of R, if there exists a nonzero derivation d such that d(x^3) e Z and I∩Z≠{0} for all x e I or [x,d(x^2 ) ]∈Z for all x∈1, then R is a commutative ring.
出处
《哈尔滨理工大学学报》
CAS
北大核心
2009年第5期105-106,共2页
Journal of Harbin University of Science and Technology
基金
黑龙江省自然科学基金资助项目(A200601)
关键词
素环
导子
扭自由
prime ring
derivation
torsion free