期刊文献+

3-维肿瘤模型解的非对称稳定性

The asymmetry stability of the solutions to a 3-dimensional tumor model
下载PDF
导出
摘要 肿瘤的非对称不稳定性,通常暗含肿瘤会浸润周围正常组织.为了研究一个考虑了细胞黏附力的未血管化3-维肿瘤的非对称稳定性,首先对该肿瘤模型球对称静止解增加了非对称扰动,应用Taylor展开,考虑了非对称扰动的线性化问题,即一个关于扰动的偏微分方程初值问题.然后利用球调和函数展开,研究了有关扰动的偏微分方程的变量分离形式的解,最后根据微分方程稳定性定理,在肿瘤静止半径没有限制或肿瘤静止半径小于1的情况下,得到了非对称扰动的稳定和不稳定的条件. The asymmetry instability of a tumor usually imply the tumor could infiltrate the surrounding normal tissue. To study the asymmetry stability of a 3-dimensional avascular tumor with adhesive forces, the symmetry stationary solutions to the model were added a asymmetry disturbance, by Taylor expansion, a linear model about the asymmetry disturbance, an initial value problem of partial differential equations, was studied. By the expansion of a function in terms of spherical harmonics, solutions in form of separation about the asymmetry disturbance were studied. At last, by the theory of stability of differential equations, under the no limitation or less than 1 to the symmetry stationary radius, the asymmetry stability of stable and unstable conditions were obtained.
作者 周钢
出处 《纺织高校基础科学学报》 CAS 2009年第3期311-315,共5页 Basic Sciences Journal of Textile Universities
基金 上海高校选拔培养优秀青年教师科研专项基金资助项目(29-003-2)
关键词 细胞黏附力 自由边界问题 非对称稳定 球调和函数 adhesive forces free boundary problems asymmetry stability spherical harmonics
  • 相关文献

参考文献8

  • 1周钢.3-维肿瘤模型球对称解的稳定性[J].纺织高校基础科学学报,2008,21(1):29-33. 被引量:1
  • 2WALTER WOLFGANG. Ordinary differential equations [ M ]. New York: Spfinger-Verlag, 1998: 311-312.
  • 3FRIEBOES H F, ZHENG XIAOMING, SUN CHUNG-HO,et al. An integrated computational/experimental model of tumor invasion[J]. Cancer Res,2006,66(3):1 597-1 604.
  • 4CHAPLAIN M A J, LOLAS G. Mathematical modeling of cancer invasion of tissue, dynamicheterogeneity [ J ]. Networks Heter Media,2006,1 (3) :399-439.
  • 5RAMIS-CONDE I, CHAPLAIN M A J, ANDERSON A R A, Mathematical modelling of cancer cell invasion of tissue [ J ]. Math Comp Mod,2008,47(5) :533-545.
  • 6TAO Y S, YOSHIDA N, GUO Q. Nonlinear analysis of a model of vascular tumorgrowth and treatment[J]. Nonlinearity, 2004,17(3) : 867-895.
  • 7FRIEDMAN A, REITICH F. Nonlinear stability of a Quasi-static stefan problem with surface tension: a continuation approach [J]. Ann Scu Norm Super Pisa,2001,30(4) :341-403.
  • 8FONTELOS M A, FRIEDMAN A. Symmetry-breaking bifurcations of free boundary problems in three dimensions [ J ]. Asymptotic Analysis, 2003,35 ( 3 ) : 187-206.

二级参考文献13

  • 1FOLKMAN J; Tumour angiogenesis[J]. Adv Cancer Res, 1950,43: 175-203.
  • 2GREENSPAN H P. Models for the growth of a solid tumor by diffusion[J]. Stud Appl Math,1972,51:317-340.
  • 3DEAKIN A S. Model for the growth of a solid in Vitro tumour[J]. Growth, 1975,39:159-165.
  • 4MAGGELAKIS S A,ADAM J A. Mathematical model of prevascular growth of a spheroid carcinoma[J]. Math Comput Mod, 1990,13:23-38.
  • 5MAGGELAKIS S A. Effects of non-uniform inhibitor production on the growth of cancer cell cultures[J]. Appl Math Lett, 1992,5 (5) : 11-14.
  • 6BYRNE H M,CHAPLAIN M A J. Growth of nonnecrotic tumours in the presence and absence of inhibitors[J]. Math Biosci, 1995,130 : 151-181.
  • 7BYRNE H M, CHAPLAIN M A J. Growth of necrotic tumors in the inhibltors[J]. Math Biosci, 1996,135: 187-216.
  • 8WARD J P,KING J R. Mathematical modelling of avascular tumour growth[J]. IMA J Math Appl Med Biol, 1997, 14 : 39-69.
  • 9WARD J P,KING J R. Mathematical modeling of avascular tumour growth Ⅱ: modeling growth saturation[J]. IMA J Math Appl Med Biol,1999, 16: 171-211.
  • 10BYRNE H M, CHAPLAIN M A J. Modelling the role of cell-cell adhesion in the growth and development of carcinomas[J]. Mathl Comput Modelling, 1996,24(12) : 1-17.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部