期刊文献+

关于Wigner定理的注记

Some remarks on Wigner′s theorem
下载PDF
导出
摘要 研究了Wigner定理的几种不同表述形式之间的关系,给出了该定理在物理、几何等不同方面的描述.应用算子论与算子代数的方法,证明了这些不同形式命题之间的等价性.结果表明,若满射T:R1(H)→R1(K)保持单位射线的内积,满射S:R(H)→R(K)保持射线的内积,满射Φ:P1(H)→P1(K)保持1-秩投影乘积的迹,满射W:H→K保持向量的内积,则存在相应的酉算子或反酉算子U:H→K,使得Uy∈Tx,r(Uy)=Sx,Φ(Px)=UPxU*及W(x)=φ(x)U(x),其中φ:H→C满足|φ(x)|=1. The relations between several different forms of Wigner's theorem are investigated, the descriptions of the theorem in terms of physics and geometry are given. By using operator theory and operator algebra, the equivalence between these different forms of propositions is proved. The results show that if the surjection T: R1 (H) R1 (K) preserves the inner product between unit rays, the surjection S:R(H)→R(K) preserves the inner prod- uct between rays, the surjection Ф : P1 (H) →P1 (K) preserves the trace of the product of rank-one projections, and the surjection W:H→K preserves the inner product between vectors, then there exists unit or anti-unitary operators U:H→K, such that Uy∈Tx,r(Uy)=Sx,Φ(Px)=UPxU*andW(x)=φ(x)U(x) ,in which φ:H→C satisfies |φ(x)| =1.
作者 堵海 曹怀信
出处 《纺织高校基础科学学报》 CAS 2009年第3期346-348,共3页 Basic Sciences Journal of Textile Universities
基金 国家自然科学基金资助项目(10871224)
关键词 Wigner定理 射线 单位射线 投影 1-秩投影 酉算子 反酉算子 Wigner's theorem ray unit ray projection rank-one projection unitary anti-unitary
  • 相关文献

参考文献5

  • 1BARGMANN V. Note on Wigner's theorem on symmetry operations [ J]. J Math Phys,1964,5:862-868.
  • 2CASSINELLI G, VITO D E, LAHTI P. Symmetry groups in quantum mechanics and the theorem of Wigner on the symmetry transformations [ J]. Rev Math Phys, 1997,9:921-941.
  • 3MOLNAR L. A generalization of Wigner's unitary-antiunitary theorem to Hilbert modules [J]. J Math Phys, 1999,40: 5 544-5 554.
  • 4MOLNAR L. An algebraic approach to Wigner's unitary-antiunitary theorem [ J]. J Aust Math Soc A :Pure Math Stat, 1998, 65 : 354-369.
  • 5RATZ J. On Wigner's theorem: Remarks, complements, comments and corollaries [ J ]. Aequationes Math, 1996,52 : 1-9.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部